摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-乙氧基-2-氟苯硼酸 | 855230-61-4

中文名称
3-乙氧基-2-氟苯硼酸
中文别名
3-乙氧基-2-氟苯基硼酸
英文名称
3-ethoxy-2-fluorophenylboronic acid
英文别名
(3-ethoxy-2-fluorophenyl)boronic acid
3-乙氧基-2-氟苯硼酸化学式
CAS
855230-61-4
化学式
C8H10BFO3
mdl
MFCD06798077
分子量
183.975
InChiKey
DCUXBPVUKGENEJ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    78-83 °C(lit.)
  • 沸点:
    335.9±52.0 °C(Predicted)
  • 密度:
    1.22±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.87
  • 重原子数:
    13
  • 可旋转键数:
    3
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.25
  • 拓扑面积:
    49.7
  • 氢给体数:
    2
  • 氢受体数:
    4

安全信息

  • WGK Germany:
    3
  • 海关编码:
    2931900090
  • 危险性防范说明:
    P264,P280,P302+P352+P332+P313+P362+P364,P305+P351+P338+P337+P313
  • 危险性描述:
    H315,H319

SDS

SDS:f383d83a26650f00a415704d2d6e0e95
查看
Material Safety Data Sheet

Section 1. Identification of the substance
Product Name: 3-Ethoxy-2-fluorophenylboronic acid
Synonyms:

Section 2. Hazards identification
Harmful by inhalation, in contact with skin, and if swallowed.

Section 3. Composition/information on ingredients.
Ingredient name: 3-Ethoxy-2-fluorophenylboronic acid
CAS number: 855230-61-4

Section 4. First aid measures
Skin contact: Immediately wash skin with copious amounts of water for at least 15 minutes while removing
contaminated clothing and shoes. If irritation persists, seek medical attention.
Eye contact: Immediately wash skin with copious amounts of water for at least 15 minutes. Assure adequate
flushing of the eyes by separating the eyelids with fingers. If irritation persists, seek medical
attention.
Inhalation: Remove to fresh air. In severe cases or if symptoms persist, seek medical attention.
Ingestion: Wash out mouth with copious amounts of water for at least 15 minutes. Seek medical attention.

Section 5. Fire fighting measures
In the event of a fire involving this material, alone or in combination with other materials, use dry
powder or carbon dioxide extinguishers. Protective clothing and self-contained breathing apparatus
should be worn.

Section 6. Accidental release measures
Personal precautions: Wear suitable personal protective equipment which performs satisfactorily and meets local/state/national
standards.
Respiratory precaution: Wear approved mask/respirator
Hand precaution: Wear suitable gloves/gauntlets
Skin protection: Wear suitable protective clothing
Eye protection: Wear suitable eye protection
Methods for cleaning up: Mix with sand or similar inert absorbent material, sweep up and keep in a tightly closed container
for disposal. See section 12.
Environmental precautions: Do not allow material to enter drains or water courses.

Section 7. Handling and storage
Handling: This product should be handled only by, or under the close supervision of, those properly qualified
in the handling and use of potentially hazardous chemicals, who should take into account the fire,
health and chemical hazard data given on this sheet.
Store in closed vessels.
Storage:

Section 8. Exposure Controls / Personal protection
Engineering Controls: Use only in a chemical fume hood.
Personal protective equipment: Wear laboratory clothing, chemical-resistant gloves and safety goggles.
General hydiene measures: Wash thoroughly after handling. Wash contaminated clothing before reuse.

Section 9. Physical and chemical properties
Appearance: Not specified
Boiling point: No data
No data
Melting point:
Flash point: No data
Density: No data
Molecular formula: C8H10BFO3
Molecular weight: 184.0

Section 10. Stability and reactivity
Conditions to avoid: Heat, flames and sparks.
Materials to avoid: Oxidizing agents.
Possible hazardous combustion products: Carbon monoxide, hydrogen fluoride.

Section 11. Toxicological information
No data.

Section 12. Ecological information
No data.

Section 13. Disposal consideration
Arrange disposal as special waste, by licensed disposal company, in consultation with local waste
disposal authority, in accordance with national and regional regulations.

Section 14. Transportation information
Non-harzardous for air and ground transportation.

Section 15. Regulatory information
No chemicals in this material are subject to the reporting requirements of SARA Title III, Section
302, or have known CAS numbers that exceed the threshold reporting levels established by SARA
Title III, Section 313.


SECTION 16 - ADDITIONAL INFORMATION
N/A

反应信息

  • 作为反应物:
    描述:
    3-乙氧基-2-氟苯硼酸双氧水溶剂黄146 作用下, 以 四氢呋喃 为溶剂, 以71%的产率得到3-ethoxy-2-fluoro-phenol
    参考文献:
    名称:
    PYRROLIDINONE GLUCOKINASE ACTIVATORS
    摘要:
    提供的化合物为公式(I): 以及药学上可接受的盐,其中取代基如说明书中所披露。这些化合物以及包含它们的药物组合物,可用于治疗代谢性疾病和障碍,例如,2型糖尿病。
    公开号:
    US20090264445A1
点击查看最新优质反应信息

文献信息

  • Nanoscale synthesis and affinity ranking
    作者:Nathan J. Gesmundo、Bérengère Sauvagnat、Patrick J. Curran、Matthew P. Richards、Christine L. Andrews、Peter J. Dandliker、Tim Cernak
    DOI:10.1038/s41586-018-0056-8
    日期:2018.5
    Most drugs are developed through iterative rounds of chemical synthesis and biochemical testing to optimize the affinity of a particular compound for a protein target of therapeutic interest. This process is challenging because candidate molecules must be selected from a chemical space of more than 1060 drug-like possibilities 1 , and a single reaction used to synthesize each molecule has more than 107 plausible permutations of catalysts, ligands, additives and other parameters 2 . The merger of a method for high-throughput chemical synthesis with a biochemical assay would facilitate the exploration of this enormous search space and streamline the hunt for new drugs and chemical probes. Miniaturized high-throughput chemical synthesis3–7 has enabled rapid evaluation of reaction space, but so far the merger of such syntheses with bioassays has been achieved with only low-density reaction arrays, which analyse only a handful of analogues prepared under a single reaction condition8–13. High-density chemical synthesis approaches that have been coupled to bioassays, including on-bead 14 , on-surface 15 , on-DNA 16 and mass-encoding technologies 17 , greatly reduce material requirements, but they require the covalent linkage of substrates to a potentially reactive support, must be performed under high dilution and must operate in a mixture format. These reaction attributes limit the application of transition-metal catalysts, which are easily poisoned by the many functional groups present in a complex mixture, and of transformations for which the kinetics require a high concentration of reactant. Here we couple high-throughput nanomole-scale synthesis with a label-free affinity-selection mass spectrometry bioassay. Each reaction is performed at a 0.1-molar concentration in a discrete well to enable transition-metal catalysis while consuming less than 0.05 milligrams of substrate per reaction. The affinity-selection mass spectrometry bioassay is then used to rank the affinity of the reaction products to target proteins, removing the need for time-intensive reaction purification. This method enables the primary synthesis and testing steps that are critical to the invention of protein inhibitors to be performed rapidly and with minimal consumption of starting materials. A system that combines nanoscale synthesis and affinity ranking enables high-throughput screening of reaction conditions and bioactivity for a given protein target, accelerating the process of drug discovery.
    大多数药物都是通过反复的化学合成和生化测试来开发,以优化特定化合物与治疗感兴趣的蛋白质靶点的亲和力。这一过程颇具挑战性,因为候选分子必须从超过10^60种类药物可能性的化学空间中选出,而用于合成每个分子的单一反应中催化剂、配体、添加剂和其他参数的合理排列组合超过10^7种。将高通量化学合成方法与生化分析方法相结合,将有助于探索这一巨大的搜索空间,并简化新型药物和化学探针的寻找过程。微型化高通量化学合成技术已经能够快速评估反应空间,但迄今为止,这种合成方法与生物分析方法的结合,仅限于低密度反应阵列,即在单一反应条件下仅分析少量类似物。高密度化学合成方法与生物分析方法相结合,包括使用珠子上、表面上、DNA上和质量编码等技术,大大减少了材料需求,但这些方法要求底物与潜在的反应性载体共价连接,必须在高度稀释的情况下进行,并且必须在混合物的形式下运作。这些反应特性限制了过渡金属催化剂的应用,因为过渡金属催化剂很容易受到复杂混合物中存在的多种官能团的毒害,而且对于动力学需要高浓度反应物的反应过程也不适用。本研究将高通量纳摩尔级合成与无标记的亲和选择质谱生物分析相结合,使得每个反应在0.1摩尔浓度的条件下进行,既可能实现过渡金属催化,又使得每个反应消耗的底物不足0.05毫克。然后,使用亲和选择质谱生物分析法对反应产物与靶蛋白的亲和力进行排序,省去了耗时的反应纯化步骤。该方法使得对蛋白质抑制剂发明至关重要的初级合成和测试步骤能够快速完成,且起始材料消耗最小。纳米级合成和亲和力排序相结合的系统可以实现对给定蛋白质靶点的反应条件和生物活性进行高通量筛选,从而加速药物发现过程。
  • From Fragment to Lead: De Novo Design and Development toward a Selective FGFR2 Inhibitor
    作者:Lewis D. Turner、Chi H. Trinh、Ryan A. Hubball、Kyle M. Orritt、Chi-Chuan Lin、Julie E. Burns、Margaret A. Knowles、Colin W. G. Fishwick
    DOI:10.1021/acs.jmedchem.1c01163
    日期:2022.1.27
    cancers with several pan-kinase and selective-FGFR inhibitors currently being evaluated in clinical trials. Pan-FGFR inhibitors often cause toxic side effects and few examples of subtype-selective inhibitors exist. Herein, we describe a structure-guided approach toward the development of a selective FGFR2 inhibitor. De novo design was carried out on an existing fragment series to yield compounds predicted
    成纤维细胞生长因子受体 (FGFR) 与一系列癌症有关,目前正在临床试验中评估几种泛激酶和选择性 FGFR 抑制剂。Pan-FGFR 抑制剂通常会引起毒副作用,并且很少有亚型选择性抑制剂的例子。在此,我们描述了一种结构导向的方法来开发选择性 FGFR2 抑制剂。对现有片段系列进行了从头设计,以产生预计可提高抗 FGFR 效力的化合物。随后的几轮迭代合成和生物学评估产生了一种具有纳摩尔效力的抑制剂,该抑制剂对 FGFR2 的选择性优于对 FGFR1/3 的选择性。先导抑制剂的细微变化导致对 FGFR2 的选择性完全丧失。X 射线晶体学研究揭示了 P 环中抑制剂特异性的形态差异,这被认为是这些化合物选择性的基础。其他对接研究预测了 FGFR2 选择性 H 键,可用于设计更具选择性的 FGFR2 抑制剂。
  • Identification of an Indazole-Based Pharmacophore for the Inhibition of FGFR Kinases Using Fragment-Led <i>de Novo</i> Design
    作者:Lewis D. Turner、Abbey J. Summers、Laura O. Johnson、Margaret A. Knowles、Colin W. G. Fishwick
    DOI:10.1021/acsmedchemlett.7b00349
    日期:2017.12.14
    Structure-based drug design (SBDD) has become a powerful tool utilized by medicinal chemists to rationally guide the drug discovery process. Herein, we describe the use of SPROUT, a de novo-based program, to identify an indazole-based pharmacophore for the inhibition of fibroblast growth factor receptor (FGFR) kinases, which are validated targets for cancer therapy. Hit identification using SPROUT
    基于结构的药物设计(SBDD)已成为药物化学家用来合理指导药物发现过程的强大工具。在此,我们描述从头开始使用SPROUT基于程序的程序,以识别基于吲唑的药效基团来抑制成纤维细胞生长因子受体(FGFR)激酶,这是经过验证的癌症治疗靶标。使用SPROUT进行命中鉴定可产生6-苯基吲哚,为预计会与FGFR1结合的小片段。借助于对接模型,对吲哚进行了几次修饰,以使片段最优化为含吲唑的药效团,从而形成了包含23种衍生物的化合物库。生物学评估表明,这些含吲唑的片段在0.8-90μM的范围内抑制FGFR1-3,具有出色的0.30-0.48配体效率。一些化合物对单个FGFR表现出中等选择性,这表明使用SBDD进行进一步优化可能会导致FGFR家族的有效和选择性抑制剂。
  • NOVEL IMMUNOMODULATOR AND ANTI-INFLAMMATORY COMPOUNDS
    申请人:MUTHUPPALANIAPPAN Meyyappan
    公开号:US20110275603A1
    公开(公告)日:2011-11-10
    The present invention provides dihydroorotate dehydrogenase inhibitors, methods of preparing them, pharmaceutical compositions containing them and methods of treatment, prevention and/or amelioration of diseases or disorders wherein the inhibition of Dihydroorotate dehydrogenase is known to show beneficial effect.
    本发明提供了二氢乳酸酐脱氢酶抑制剂、其制备方法、含有它们的药物组合物以及治疗、预防和/或改善已知抑制二氢乳酸酐脱氢酶显示有益作用的疾病或障碍的方法。
  • Pyrrolidinone glucokinase activators
    申请人:Hoffmann-La Roche Inc.
    公开号:US07741327B2
    公开(公告)日:2010-06-22
    Provided herein are compounds of the formula (I): as well as pharmaceutically acceptable salts thereof, wherein the substituents are as those disclosed in the specification. These compounds, and the pharmaceutical compositions containing them, are useful for the treatment of metabolic diseases and disorders such as, for example, type II diabetes mellitus.
    本文提供的是公式(I)的化合物,以及其药学上可接受的盐,其中取代基如规范中所披露的那样。这些化合物以及含有它们的药物组合物,对于治疗代谢性疾病和紊乱,例如2型糖尿病非常有用。
查看更多