coumarin-phosphine derivative, which displays tunable fluorescence properties. The fluorescence is quenched in the case of the free ligand and ruthenium and osmium complexes, whereas it is strong for the gold complexes and phosphonium derivatives. These trends were rationalized by theoretical calculations, which revealed non-radiative channels involving a dark state for the free ligands that is lower in energy than
tetrametallic gold(I) phosphine dithiocarbamate complexes were synthesized, starting from cyclam and dimethylcyclam polyazamacrocycles, respectively, along with their monometallic gold(I) chloridophosphine precursors. Their antiproliferativeproperties were evaluated on two cancer cell lines (A549 and NSCLC-N6-L16). Most of the mono- and bimetallic complexes displayed strong activities and, in particular
A promising gold-based optical theranosticagent was conceived. This phosphine-phosphonium gold(I) complex can be tracked by two-photon imaging thanks to a coumarin moiety. It displayed strong anti-proliferative properties against cancercell lines and induced an anti-cancer effect in vivo.
Gold phosphine complexes, such as auranofin, have been recognized for decades as antirheumatic agents. Clinical trials are now underway to validate their use in anticancer or anti-HIV treatments. However, their mechanisms of action remain unclear. A challenging question is whether the gold phosphine complex is a prodrug that is administered in an inactive precursor form or rather that the gold atom remains attached to the phosphine ligand during treatment. In this study, we present two novel gold complexes, which we compared to auranofin and to their phosphonium analogue. The chosen ligand is a phosphine-based smart probe, whose strong fluorescence depends on the presence of the gold atom. The in vitro biological action of the gold complexes and the phosphonium derivative were investigated, and a preliminary in vivo study in healthy zebrafish larvae allowed us to evaluate gold complex biodistribution and toxicity. The different analyses carried out showed that these gold complexes were stable and behaved differently from phosphonium and auranofin, both in vitro and in vivo. Two-photon microscopy experiments demonstrated that the cellular targets of these gold complexes are not the same as those of the phosphonium analogue. Moreover, despite similar IC50 values in some cancer cell lines, gold complexes displayed a low toxicity in vivo, in contrast to the phosphonium salt. They are therefore suitable for future in vivo investigations.