Nardosinone 是从甘松(Nardostachys chinensis)中分离出的一种化合物,首次被证实可以增强 dbcAMP 和 staurosporine 的神经生成作用。这种物质可能成为研究神经生长因子 (NGF) 以及神经毒性物质作用机制的重要药理工具。
体外研究在体外研究中,Nardosinone(浓度范围:0.1-100 微摩尔)能够以浓度依赖的方式增强 dibutyryl cAMP (dbcAMP, 浓度为 0.3 毫摩尔) 和 staurosporine (浓度为 10 纳摩尔) 引发的 PC12D 细胞神经突生长。Nardosinone 可以促进 MAP kinase 依赖信号通路中的下游步骤。
化学性质Nardosinone 是一种白色结晶粉末,易溶于甲醇,几乎不溶于乙醚,来源于甘松(Nardostachys chinensis Batal)的干燥根及根茎。
用途甘松新酮具有多种药理作用:镇静、抗癫痫、抗抑郁、促神经生长、改善认知能力、保护心肌细胞、降血压、抑菌与抗疟、以及抗肿瘤。这些化合物广泛用于含量测定/鉴定和药理实验等研究中。
药理药效甘松新酮的药理作用包括镇静、抗癫痫、抗抑郁、促神经生长、改善认知能力、保护心肌细胞、降血压、抑菌与抗疟、以及抗肿瘤等多种生物活性。
中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
—— | nardosinonediol | 20489-11-6 | C15H24O3 | 252.354 |
萘并[2,3-b]噁丙烯-2(1aH)-酮,4,5,6,6a,7,7a-六氢-7-(1-羟基-1-甲基乙基)-6,6a-二甲基-,(1aS,6R,6aR,7S,7aS)- | isonardosinone | 27062-01-7 | C15H22O3 | 250.338 |
Nardosinone, a predominant bioactive product from Nardostachys jatamansi DC, is well-known for its promising therapeutic applications, such as being used as a drug on anti-inflammatory, antidepressant, cardioprotective, anti-neuroinflammatory, anti-arrhythmic, anti-periodontitis, etc. However, its stability under varying environmental conditions and its degradation products remain unclear. In this study, four main degradation products, including two previously undescribed compounds [2–deoxokanshone M (64.23%) and 2–deoxokanshone L (1.10%)] and two known compounds [desoxo-narchinol A (2.17%) and isonardosinone (3.44%)], were firstly afforded from the refluxed products of nardosinone in boiling water; their structures were identified using an analysis of the extensive NMR and X–ray diffraction data and the simulation and comparison of electronic circular dichroism spectra. Compared with nardosinone, 2–deoxokanshone M exhibited potent vasodilatory activity without any of the significant anti-neuroinflammatory activity that nardosinone contains. Secondly, UPLC–PDA and UHPLC–DAD/Q–TOF MS analyses on the degradation patterns of nardosinone revealed that nardosinone degraded more easily under high temperatures and in simulated gastric fluid compared with the simulated intestinal fluid. A plausible degradation pathway of nardosinone was finally proposed using nardosinonediol as the initial intermediate and involved multiple chemical reactions, including peroxy ring-opening, keto–enol tautomerization, oxidation, isopropyl cleavage, and pinacol rearrangement. Our findings may supply certain guidance and scientific evidence for the quality control and reasonable application of nardosinone-related products.