摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

iron manganese | 12518-52-4

中文名称
——
中文别名
——
英文名称
iron manganese
英文别名
manganese-iron;Iron;manganese
iron manganese化学式
CAS
12518-52-4
化学式
FeMn
mdl
——
分子量
110.785
InChiKey
DALUDRGQOYMVLD-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.01
  • 重原子数:
    2
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

反应信息

  • 作为反应物:
    描述:
    硼烷iron manganese 以 neat (no solvent) 为溶剂, 生成
    参考文献:
    名称:
    非晶(Fe1-xMnx)80B20(0 ≤x≤0.25)合金的磁性能
    摘要:
    已经通过穆斯堡尔光谱和磁化测量研究了具有 (Fe 1- x Mn x ) 80 B 20 (0 ≤ x ≤0.25) 成分的非晶合金。所有样品都表现出铁磁行为。0 K 时的饱和磁化强度、居里温度 TC 和平均超精细场从 x = 0 时的 197 emu/g、680 K 和 286 kOe 单调降低到 x =0.25 时的 107 emu/g、383 K 和 178 kOe。TC 的浓度依赖性给出了交换相互作用的结论,即与 J Fe-Fe 相比,J Fe-Mn 和 J Mn-Mn 分别是相对较小的正值和负值。结合交换相互作用讨论了 Fe 和 Mn 原子的磁矩。
    DOI:
    10.1143/jpsj.50.3575
  • 作为产物:
    描述:
    manganese ferrite氢气 作用下, 以 neat (no solvent) 为溶剂, 反应 1.0h, 生成 iron manganese
    参考文献:
    名称:
    State of doped Mn in Fe–Mn soft magnetic powders fabricated by wet process and hydrogen reduction
    摘要:
    DOI:
    10.1016/j.jallcom.2020.157983
点击查看最新优质反应信息

文献信息

  • Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas
    作者:T HERRANZ、S ROJAS、F PEREZALONSO、M OJEDA、P TERREROS、J FIERRO
    DOI:10.1016/j.jcat.2006.07.012
    日期:2006.10.1
    CO and syngas treatment, cementite (θ-Fe3C) and Hägg (χ-Fe2.5C) carbides were formed, respectively. Different surface carbonaceous species were stabilized over these carbides. Cementite species are less active in the Fischer–Tropsch synthesis; however, under the Fischer–Tropsch reaction environment, they can evolve into the Hägg carbide, over which the more active carbonaceous intermediate species are
    一系列纯或用Ce或Mn促进的基费-托催化剂都经过了H 2,CO或H 2 / CO的不同活化处理。经过不同处理后形成的表面物质的特征在于,通过程序升温的氢气进行表面反应(TPSR-H 2)和通过程序升温的气进行表面脱附(TPD-Ar)。活化和程序升温处理后,将样品钝化并通过X射线衍射和拉曼光谱进行表征。每次活化处理后,对催化剂进行费-托合成测试,并通过Mössbauer光谱对选定的反应后样品进行表征。经过一氧化碳和合成气处理后,渗碳体(θ -Fe分别形成了3 C)和Hägg(χ -Fe 2.5 C)碳化物。在这些碳化物上稳定了不同的表面碳质物质。在费-托合成中,渗碳体的活性较低。但是,在费-托反应环境下,它们可以演化为哈格碳化物,并在其上形成活性更高的碳质中间物种。仅当样品在CO下活化时,用Mn和Ce修饰催化剂组合物才有效,从而加速了活性碳中间体的稳定化。
  • Manufacturing an ultra-low-sulfur CoCrFeMnNi high-entropy alloy by slagging through induction melting with ferroalloys feedstock
    作者:Shengchao Duan、Jiyeon Kang、Jinhyung Cho、Minjoo Lee、Wangzhong Mu、Joo Hyun Park
    DOI:10.1016/j.jallcom.2022.167080
    日期:2022.12
    raw material feedstock was investigated in an induction melting furnace at 1773 K to determine how to control the cleanness of the HEA. The resulting desulfurization ratios of the alloy were approx. 47% when refined by the CaAl2O4-MgAl2O4(CA-MA)-saturated slag in an Al2O3 refractory, whereas 94% when refined by the CaO-MgO(C-M)-saturated slag in a MgO refractory. The overall mass transfer coefficients
    由于其价格优势和制造过程的生产率,商业被用于制造 CoCrFeMnNi 高熵合 (HEA)。然而,中的元素杂质(如)会破坏 HEA 的机械性能。因此,在 1773 K 的感应熔炼炉中研究了 CoCrFeMnNi HEA 使用 CaO-MgO-Al 2 O 3 (CAM) 造渣法以氧化铝或质耐火材料和为原料的脱行为,以确定如何控制HEA 的清洁度。所得合的脱率约为。用 CaAl 2 O 4 -MgAl 2 O 4精炼时为 47%(CA-MA)-饱和炉渣在 Al 2 O 3耐火材料中,而在 MgO 耐火材料中用 CaO-MgO(CM)-饱和炉渣精炼时为 94%。由 CA-MA 和 CM 饱和炉渣在 1773 K 精炼的 HEA 的总传质系数为ķ○=1.4×10-6米/s和ķ○=2.0×10-6米/s,分别低于相同实验条件下基和基合的系数。当固相率接近1.0
  • Mössbauer study of vacancy–solute pairs in iron-based binary alloys
    作者:R. Idczak、B. Kaśków、R. Konieczny、J. Chojcan
    DOI:10.1016/j.physb.2019.411794
    日期:2020.1
    The influence of thermal and mechanical treatment on formation and evolution of vacancies in some binary iron-based alloys (Fe-W, Fe-Ti, Fe-V, Fe-Mn, Fe-Ru, Fe-Si) were studied using the transmission Mossbauer spectroscopy (TMS). The obtained results reveal that in the case of Fe-W, Fe-Ti and Fe-V alloys, the vacancies which were generated during arc-melting and cold-rolling processes are located mainly in the vicinity of noniron atoms. This speaks in favour of the suggestion that in the iron matrix the mentioned above solute atoms and vacancies interact attractively which supports the known from the literature theoretical calculations on the vacancy-solute interaction in alpha-Fe. On the other hand, in the case of Fe-Mn, Fe-Ru and Fe-Si alloys the TMS results exclude the presence of vacancy-solute pairs at room temperature.
  • Phase relationships in the Er–Fe–Mn ternary system at 773K
    作者:Jingqi Liu、Kunpeng Su、Xueqiang Li、Xina Wang、Xiaomao Yang、Mengqi Tang、Chunhui Li
    DOI:10.1016/j.jallcom.2008.06.108
    日期:2009.4
    In order to determine the existence of phases and relationships in the Er-Fe-Mn system at 773 K, we have carried out this work mainly by X-ray powder diffraction with the aid of differential thermal analysis and have obtained the conclusions below. The existence of seven binary compounds ErFe2, ErFe3, Er6Fe23, Er2Fe17, ErMn12, Er6Mn23, ErMn23 and one intermediate solid solution gamma(Fe center dot Mn) have been confirmed in this system. Er6Fe23 and Er6Mn23 form continuous solid solution Er-6 (Fe23-X Mn-X) (0 <= X <= 23). At 773 K, the maximum solid solubility of Fe in alpha Mn, ErMn12, ErMn2 phases and Mn in ErFe2, Er2Fe17, alpha Fe phases are about 31, 69, 13 at% Fe and 47, 28, 8 at% Mn, respectively. The homogeneity range of gamma(Fe center dot Mn) phase extended from about 34 at% Mn to 52 at% Mn. The maximum solid solubility of Er in gamma(Fe center dot Mn) phase is about 2 at% Er. The isothermal section consists often single-phase regions, sixteen two-phase regions and seven three-phase regions. No ternary compounds were observed at 773 K in this system. (C) 2008 Elsevier B.V. All rights reserved
  • Effect of chromium addition on the reactivation of the titanium-iron-manganese (TiFe0.85Mn0.15) alloy
    作者:Poojan Modi、Wei Liu、Kondo-Francois Aguey-Zinsou
    DOI:10.1016/j.jallcom.2021.161943
    日期:2022.1
查看更多

同类化合物

([2-(萘-2-基)-4-氧代-4H-色烯-8-基]乙酸) (R)-斯替戊喷酯-d9 (E,Z)-他莫昔芬N-β-D-葡糖醛酸 (E)-3-(4-(叔丁基)苯基)丙烯酸乙酯 (E)-3-(2-(三氟甲基)苯基)丙烯酸乙酯 (E)-3-(2,4-二甲氧基苯基)丙烯酸乙酯 (E/Z)-他莫昔芬-d5 (5Z)-7-氧杂烯醇 (4S,5R)-4,5-二苯基-1,2,3-恶噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S,5R,5''R)-2,2''-(1-甲基亚乙基)双[4,5-二氢-4,5-二苯基恶唑] (4R,5S)-4,5-二苯基-1,2,3-恶噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4R,4''R,5S,5''S)-2,2''-(1-甲基亚乙基)双[4,5-二氢-4,5-二苯基恶唑] (4-甲氧基-6-[(E)-2-(3-甲氧基苯基)乙烯基]-5,6-二氢-2H-吡 (2Z)-1,3-二苯基-2-丙烯-1-酮,2-丙烯-1-酮,1,3-二苯基-,(2Z)- (2E)-N-[2-(3-羟基-2-氧代-2,3-二氢-1H-吲哚-3-基)乙基]-3-苯基丙-2-烯酰胺 (1R,2R)-2-(二苯基膦基)-1,2-二苯基乙胺 (11aR)-3,7-双(3,5-二甲基苯基)-10,11,12,13-四氢-5-羟基-5-氧化物-二茚基[7,1-de:1'',7''-fg][1,3,2]二氧杂膦酸 龙血素D 龙血素C 龙血素A 龙血素 B 龙血树脂红血树脂 鼠李素 鼠李柠檬素3-O-beta-D-鼠李三糖苷 鼠李柠檬素 鼠李亭3-O-beta-吡喃葡萄糖苷 鼓槌石斛素 黄麦格霉素 黄金树苷 黄酮醇-2-磺酸钠盐 黄酮胺 黄酮榕碱 黄酮地洛 黄酮哌酯 黄酮 黄豆黄苷 黄豆黄素 黄豆苷元-D6 黄豆苷元-4,7-二葡糖苷 黄诺马甙 黄苏木素 黄花夹竹桃黄酮 黄芪总皂甙 黄芪异黄烷苷,7,2'-二羟基-3',4'-二甲氧基异黄烷 黄芩黄酮II 黄芩黄酮I 黄芩黄酮 黄芩苷甲酯 黄芩苷 黄芩素磷酸酯