[GRAPHICS]The title compound, a potent protein phosphatase inhibitor and anticancer agent, was prepared by an efficient, multiconvergent asymmetric synthesis. Key transformations include a ring forming olefin metathesis leading to the a-p-unsaturated lactone and creation of the triene moiety via Suzuki cross-coupling.
[GRAPHICS]The title compound, a potent protein phosphatase inhibitor and anticancer agent, was prepared by an efficient, multiconvergent asymmetric synthesis. Key transformations include a ring forming olefin metathesis leading to the a-p-unsaturated lactone and creation of the triene moiety via Suzuki cross-coupling.
Total Synthesis of the Ansamycin Antibiotic (+)-Thiazinotrienomycin E
作者:Amos B. Smith、Zehong Wan
DOI:10.1021/jo991958j
日期:2000.6.1
first total synthesis of (+)-thiazinotrienomycin E (1), member of a novel class of cytotoxic ansamycin antibiotics, has been achieved. Key features of the synthetic strategy include (a) the efficient construction of sulfone 7 incorporating TBS protection of the aniline, (b) an improved synthesis of allyl chloride (-)-6, the advanced intermediate employed in our trienomycins A and F totalsyntheses, (c)
[GRAPHICS]The first total synthesis of (+)-thiazinotrienomycin E (1), member of a novel class of cytotoxic ansamycin antibiotics, has been achieved. The synthesis features a highly efficient construction of the aromatic fragment 3 incorporating TBS protection of the aniline, a significantly improved synthesis of (-)-19, an intermediate employed in our trienomycins A and F total syntheses, application of the Kocienski modified Julia protocol to elaborate the E,E,E-triene subunit, an efficient union of 3 and (+)-4, and Mukaiyama macrolactamization to access the thiazinotrienomycin macrolide.