ribonucleosides in the prokaryotic epitranscriptome, many tRNA modifications are critical to bacterial survival, which makes their synthetic enzymes ideal targets for antibiotic development. Here we performed a structure-based design of inhibitors of tRNA-(N1G37) methyltransferase, TrmD, which is an essential enzyme in many bacterial pathogens. On the basis of crystal structures of TrmDs from Pseudomonas aeruginosa
在原核转录组中> 120个修饰的
核糖核苷中,许多tRNA修饰对于细菌存活至关重要,这使其合成酶成为抗生素开发的理想靶标。在这里,我们进行了基于结构的tRNA-(N1G37)甲基转移酶TrmD
抑制剂的设计,该酶是许多细菌病原体中必不可少的酶。基于
铜绿假单胞菌和结核分枝杆菌的TrmDs的晶体结构,我们合成了一系列对TrmD具有纳摩尔效价的
噻吩并
嘧啶酮衍
生物,并发现了
抑制剂结合引发的新型活性位点构象变化。这种
酪氨酸翻转机制是在
铜绿假单胞菌TrmD中唯一发现的,并使辅酶S-
腺苷-1-甲
硫氨酸(S
AM)以及底物tRNA难以接近该酶。
生物物理和生化结构-活性关系研究提供了对
噻吩并
嘧啶酮作为TrmD
抑制剂的潜在作用机理的见解,发现了几种衍
生物对革兰氏阳性和分枝杆菌病原体具有活性。这些结果为进一步开发作为抗菌剂的TrmD
抑制剂奠定了基础。