/Investigators/ studied the effects of methyl jasmonate in combination with sucrose on defense-related gene expression, stilbene and anthocyanin production in grapevine cell suspensions. The methyl jasmonate/sucrose treatment was effective in stimulating phenylalanine ammonia lyase, chalcone synthase, stilbene synthase, UDP-glucose: flavonoid-O-glucosyltransferase, proteinase inhibitor and chitinase gene expression, and triggered accumulation of both piceids and anthocyanins in cells, and trans-resveratrol and piceids in the extracellular medium...
Capsicum annuum /(C. annuum)/ suspension cell cultures were used to evaluate the effect of cyclodextrins and methyl jasmonate as elicitors of defense responses. The induced defense responses included the accumulation of sesquiterpenes and phytosterols and the activation of pathogenesis-related proteins, leading to reinforcement and modification of the cell wall architecture during elicitation and protection cells against biotic stress. The results showed that the addition of both cyclodextrins and methyl jasmonate induced the biosynthesis of two sesquiterpenes, aromadendrene and solavetivone. This response was clearly synergistic since the increase in the levels of these compounds was much greater in the presence of both elicitors than when they were used separately. The biosynthesis of phytosterols was also induced in the combined treatment, as the result of an additive effect. Likewise, the exogenous application of methyl jasmonate induced the accumulation of pathogenesis-related proteins. The analysis of the extracellular proteome showed the presence of amino acid sequences homologous to PR1 and 4, NtPRp27-like proteins and class I chitinases, peroxidases and the hydrolytic enzymes LEXYL1 and 2, arabinosidases, pectinases, nectarin IV and leucin-rich repeat protein, which suggests that methyl jasmonate plays a role in mediating defense-related gene product expression in C. annuum. Apart from these methyl jamonate-induced proteins, other PR proteins were found in both the control and elicited cell cultures of C. annuum. These included class IV chitinases, beta-1,3-glucanases, thaumatin-like proteins and peroxidases, suggesting that their expression is mainly constitutive since they are involved in growth, development and defense processes.
Boron is an essential plant micronutrient, but it is phytotoxic if present in excessive amounts in soil for certain plants such as Artemisia annua L. /(A. annua)/ that contains artemisinin (an important antimalarial drug) in its areal parts. Artemisinin is a sesquiterpene lactone with an endoperoxide bridge... the present research was conducted to determine whether the exogenous application of methyl jasmonate (MeJA) could combat the ill effects of excessive /Boron stress/ (B) present in the soil. According to the results obtained, the B toxicity induced oxidative stress and reduced the stem height as well as fresh and dry masses of the plant remarkably. The excessive amounts of soil B also lowered the net photosynthetic rate, stomatal conductance, internal CO2 concentration and total chlorophyll content in the leaves. In contrast, the foliar application of MeJA enhanced the growth and photosynthetic efficiency both in the stressed and non-stressed plants. The excessive B levels also increased the activities of antioxidant enzymes, such as catalase, peroxidase and superoxide dismutase... the MeJA application to the stressed plants reduced the amount of lipid peroxidation and stimulated the synthesis of antioxidant enzymes, enhancing the content and yield of artemisinin as well. Thus, it was concluded that MeJA might be utilized in mitigating the B toxicity and improving the content and yield of artemisinin in A. annua plant.
/SRP:/ Immediate first aid: Ensure that adequate decontamination has been carried out. If patient is not breathing, start artificial respiration, preferably with a demand valve resuscitator, bag-valve-mask device, or pocket mask, as trained. Perform CPR if necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on the left side (head-down position, if possible) to maintain an open airway and prevent aspiration. Keep patient quiet and maintain normal body temperature. Obtain medical attention. /Poisons A and B/
/SRP:/ Basic treatment: Establish a patent airway (oropharyngeal or nasopharyngeal airway, if needed). Suction if necessary. Watch for signs of respiratory insufficiency and assist ventilations if needed. Administer oxygen by nonrebreather mask at 10 to 15 L/min. Monitor for pulmonary edema and treat if necessary ... . Monitor for shock and treat if necessary ... . Anticipate seizures and treat if necessary ... . For eye contamination, flush eyes immediately with water. Irrigate each eye continuously with 0.9% saline (NS) during transport ... . Do not use emetics. For ingestion, rinse mouth and administer 5 mL/kg up to 200 mL of water for dilution if the patient can swallow, has a strong gag reflex, and does not drool ... . Cover skin burns with dry sterile dressings after decontamination ... . /Poisons A and B/
[EN] JASMONATE DERIVATIVE COMPOUNDS, PHARMACEUTICALS COMPOSITIONS AND METHODS OF USE THEREOF [FR] COMPOSES DERIVES DE JASMONATE, COMPOSITIONS PHARMACEUTIQUES ET METHODES D'UTILISATION ASSOCIEES
Jasmonoids with cis-2-pentenyl side chain such as cis-jasmone, methyl jasmonate, and jasmolone were easily synthesized from cis-4-heptenoic acid obtained by the ring opening reaction of β-propiolactone with di-cis-butenylcuprate.
Highly Selective Hydrogenation of Carbon-Carbon Multiple Bonds Catalyzed by the Cation [(C<sub>6</sub>Me<sub>6</sub>)<sub>2</sub>Ru<sub>2</sub>(PPh<sub>2</sub>)H<sub>2</sub>]<sup>+</sup>: Molecular Structure of [(C<sub>6</sub>Me<sub>6</sub>)<sub>2</sub>Ru<sub>2</sub>(PPh<sub>2</sub>)(CHCHPh)H]<sup>+</sup>, a Possible Intermediate in the Case of Phenylacetylene Hydrogenation
been studied as the catalyst for the hydrogenation of carbon-carbon double and triple bonds. In particular, [1][BF(4)] turned out to be a highly selectivehydrogenation catalyst for olefin functions in molecules also containing reducible carbonyl functions, such as acrolein, carvone, and methyljasmonate. The hypothesis of molecular catalysis by dinuclear ruthenium complexes is supported by catalyst-poisoning
Disclosed are compounds having the ability to inhibit cytochrome P450 2A6, 2A13, and/or 2B6 and tobacco products comprising them. Also disclosed are pharmaceutical compositions comprising them.
Synthesis, structural characterization and biological activity of two diastereomeric JA-Ile macrolactones
作者:Guillermo H. Jimenez-Aleman、Ricardo A. R. Machado、Helmar Görls、Ian T. Baldwin、Wilhelm Boland
DOI:10.1039/c5ob00362h
日期:——
the potential biological activities of 12-modified JA-Ile derivatives, we synthesized two macrolactones (JA-Ile-lactones (4a) and (4b)) derived from 12-OH-JA-Ile (3). The biological activity of (4a) and (4b) was tested for their ability to elicit nicotine production, a well-known jasmonate dependent secondary metabolite. Both macrolactones showed strong biological activity, inducing nicotine accumulation
Partial Syntheses of Methyl Dehydrojasmonate and Tuberolactone
作者:Paul Dubs、Rita Stüssi
DOI:10.1002/hlca.19780610308
日期:1978.4.19
The natural products methyldehydrojasmonate (1) and tuberolactone (2) have been synthesized from methyl jasmonate (3) and jasmolactone (4) resp., via sulfenylation-sulfoxide pyrolysis.