代谢
多环芳烃在哺乳动物细胞中的代谢会导致生成被认为是终极致癌物的邻二醇环氧物,如果环氧环位于母体化合物的湾区或峡区。在当前研究中,chrysene、dibenz[a,h]anthracene和benzo[a]pyrene的湾区二醇环氧物的个体对映异构体以及benzo[c]phenanthrene、benzo[c]chrysene和benzo[g]-chrysene的峡区二醇环氧物已经与GSH一起在人类谷胱甘肽转移酶GSTM1-1(一个mu类酶)和GSTP1-1(一个pi类酶)的存在下进行了孵化。正如之前用GSTA1-1(一个alpha类酶)所展示的,M1-1和P1-1对本研究中的许多二醇环氧物表现出相当大的活性,尽管在催化效率和立体选择性方面观察到很大的变化。对于GSTM1-1,特别是湾区二醇环氧物的syn-对映异构体通常比峡区类似物更有效地与GSH结合。GSTM1-1对于在环氧环的苄基位置具有R-构型的对映异构体的结合显示出从无偏好(50%)到高度偏好(大于或等于90%)的立体选择性。对于GSTP1-1,该酶对湾区和峡区二醇环氧物都表现出了相当大的活性,并且在大多数情况下对anti-对映异构体有偏好。与GSTM1-1和之前对GSTA1-1的展示相反,GSTP1-1对于在苄基环氧碳上具有R-构型的对映异构体的结合显示出独有的偏好。对于GSTM1-1和GSTP1-1,化学上最活性的二醇环氧物,即反式-7,8-二羟基-9,10-环氧-7,8,9,-10-四氢苯并[a]芘的(+)-syn-对映异构体(BPDE),是最好的底物。与GSTA1-1一样,化合物的化学活性和亲脂性与其催化效率之间没有明显的相关性。二醇环氧物在GSTP1-1和-A1-1活性位点的分子建模与基于功能研究的假设相一致,即GSTA1-1的H位点可以容纳不同大小的立体异构体。此外,将anti-和syn-BPDE的对映异构体在GSTP1-1的活性位点进行建模,为对在苄基环氧碳上具有R-构型的对映异构体的独有偏好提供了解释。这些异构体可以被紧密地适配在H位点,靠近GSH硫,而具有相反立体化学的异构体则不能。
Metabolism of polycyclic aromatic hydrocarbons in mammalian cells results in the formation of vicinal diol epoxides considered as ultimate carcinogens if the oxirane ring is located in a bay- or fjord-region of the parent compound. In the present study, individual stereoisomers of the bay-region diol epoxides of chrysene, dibenz[a,h]anthracene, and benzo[a]pyrene as well as of the fjord-region diol epoxides of benzo[c]phenanthrene, benzo[c]chrysene, and benzo[g]-chrysene have been incubated with GSH in the presence of human glutathione transferases GSTM1-1 (a mu-class enzyme) and GSTP1-1 (a pi-class enzyme). As previously shown with GSTA1-1 (an alpha-class enzyme) both M1-1 and P1-1 demonstrate considerable activity toward a number of the diol epoxides studied, although a great variation in catalytic efficiency and enantioselectivity was observed. With GSTM1-1, the bay-region diol epoxides, in particular the syn-diastereomers were in most cases more efficiently conjugated with GSH than the fjord-region analogues. GSTM1-1 demonstrated an enantioselectivity ranging from no preference (50%) to high preference (> or = 90%) for conjugation of the enantiomers with R-configuration at the benzylic position of the oxirane ring. With GSTP1-1, the enzyme demonstrated appreciable activity toward both bay- and fjord-region diol epoxides and, in most cases, a preference for the anti-diastereomers. In contrast to GSTM1-1 and as previously shown for GSTA1-1, GSTP1-1 showed an exclusive preference for conjugation of the enantiomers with R-configuration at the benzylic oxirane carbon. With both GSTM1-1 and GSTP1-1, the chemically most reactive diol epoxide, the (+)-syn-enantiomer of trans-7,8-dihydroxy-9,10-epoxy-7,8,9,-10-tetrahydrobenzo[a]pyrene (BPDE), was the best substrate. As for GSTA1-1, no obvious correlation between chemical reactivity or lipophilicity of the compounds and catalytic efficiencies was observed. Molecular modeling of diol epoxides in the active sites of GSTP1-1 and -A1-1 is in agreement with the assumption, based on functional studies, that the H-site of GSTA1-1 can accommodate stereoisomers of different sizes. Further, modeling of the enantiomers of anti- and syn-BPDE in the active site of GSTP1-1 provides an explanation for the exclusive preference for the enantiomers with R-configuration at the benzylic oxirane carbon. These isomers could be snuggly fitted in the H-site close to the GSH sulfur, whereas those with opposite stereochemistry could not.
来源:Hazardous Substances Data Bank (HSDB)