Backbone geometry and side-chain self-assembly are key factors that govern the aggregation of conjugated semiconducting polymers and affect charge transport. Tuning of charge transport properties hinges on being able to strike a balance between electronic structures, self-assembly, and robustness to disorder. This work describes a top-down design strategy focusing on the geometry of polymer aggregates. A heptacyclic acceptor anthradithiophene diimide was designed to build self-assembled polymers. The corresponding polymers possess a pseudolinear rodlike backbone geometry with interdigitated alkyl chains. Using a fluorinated comonomer suppresses the rotational disorder and preserves the backbone symmetry at a relatively long length scale, leading to improved planarity and facilitating intrachain charge transport. These polymers exhibit ambipolar transistor performance with the maximum hole mobility of 4.21 cm2 V–1 s–1. The experimental microstructures are in good agreement with the simulated unit cells, indicating an extended dimensionality of charge transport pathways. These promising results may help to complement the design rationales of semiconducting polymers.
主链几何和侧链自组装是决定共轭半导体聚合物聚集及影响电荷传输的关键因素。调节电荷传输特性依赖于能够在电子结构、自组装和对无序的鲁棒性之间找到平衡。本研究描述了一种自上而下的设计策略,重点关注聚合物聚集体的几何结构。设计了一种七环受体
蒽二
噻吩二
酰亚胺,以构建自组装聚合物。相应的聚合物具有伪线性棒状主链几何结构和交错的烷基链。使用
氟化共聚单体可以抑制旋转无序,并在相对较长的长度尺度上保持主链对称性,从而改善平面度并促进链内电荷传输。这些聚合物展现出双极晶体管性能,最大孔迁移率为4.21 cm² V⁻¹ s⁻¹。实验微观结构与模拟单位胞高度一致,表明电荷传输路径的扩展维度。这些有前景的结果可能有助于完善半导体聚合物的设计理论。