Triethylamine appears as a clear colorless liquid with a strong ammonia to fish-like odor. Flash point 20°F. Vapors irritate the eyes and mucous membranes. Less dense (6.1 lb / gal) than water. Vapors heavier than air. Produces toxic oxides of nitrogen when burned.
颜色/状态:
Colorless liquid
气味:
Strong, ammoniacal ordor
蒸汽密度:
3.48 (NTP, 1992) (Relative to Air)
蒸汽压力:
57.07 mm Hg at 25 °C
亨利常数:
Henry's Law constant = 1.49X10-4 atm-cu m/mole at 25 °C
There have been few studies on the metabolism of industrially important aliphatic amines such as triethylamine. It is generally assumed that amines not normally present in the body are metabolized by monoamine oxidase and diamine oxidase (histaminase). Monoamine oxidase catalyzes the deamination of primary, secondary, and tertiary amines. ... Ultimately ammonia is formed and will be converted to urea. The hydrogen peroxide formed is acted upon by catalase and the aldehyde formed is thought to be converted to the corresponding carboxylic acid by the action of aldehyde oxidase.
Five healthy volunteers were exposed by inhalation to triethylamine (TEA; four or eight hours at about 10, 20, 35, and 50 mg/cu m), a compound widely used as a curing agent in polyurethane systems. Analysis of plasma and urine showed that an average of 24% of the TEA was biotransformed into triethylamine-N-oxide (TEAO) but with a wide interindividual variation (15-36%). The TEA and TEAO were quantitatively eliminated in the urine. The plasma and urinary concentrations of TEA and TEAO decreased rapidly after the end of exposure (average half time of TEA was 3.2 hr).
In 20 workers studied before, during, and after exposure to triethylamine (TEA) in a polyurethane-foam producing plant the amount of TEA and its metabolite triethylamine-N-oxide (TEAO) excreted in urine corresponded to an average of 80% of the inhaled amount. An average of 27% was TEAO, but with a pronounced interindividual variation. Older subjects excreted more than younger ones; less than 0.3% was excreted as diethylamine.
IDENTIFICATION AND USE: Triethylamine (TEA) is a colorless liquid. It is used as catalytic solvent in chemical synthesis; accelerator activators for rubber; wetting, penetrating, and waterproofing agents of quaternary ammonium types; curing and hardening of polymers; corrosion inhibitor; propellant. HUMAN EXPOSURE AND TOXICITY: Aside from irritation of the eyes and respiratory tract, triethylamine also stimulates the central nervous system, because it inhibits monamine oxidase. Experimental studies were conducted in four healthy men on the metabolism of inhaled TEA (20 mg/cu m) with and without ethanol ingestion. Three subjects displayed visual disturbances in the experiments without ethanol. These same subjects did not experience any visual disturbances in those experiments containing ethanol. In another study, four hour exposure to a TEA concentration of 3.0 mg/cu m seemed to cause no effects, whereas exposure to 6.5 mg/cu m for the same period caused blurred vision and a decrease in contrast sensitivity. Two volunteers were exposed to various airborne concentrations of triethylamine. Levels of 18 mg/cu m for eight hours caused subjective visual disturbances (haze and halos) and objective corneal edema. The effects faded within hours after the end of exposure. A cross-sectional study of visual disturbances was conducted in 19 workers (13 men, 6 women, mean age 45) employed in a polyurethane foam production plant. Visual disturbances (foggy vision, blue haze, and sometimes halo phemomena) were reported by 5 workers. Symptoms were associated with work operations with the highest exposure to triethylamine (TWA= 12-13 mg/cu m). ANIMAL STUDIES: TEA irritates the mucous membranes and the respiratory tract. In concentrations of 156 ppm a 50% decrease of the respiratory rate in rats was found. A 70% solution applied on the skin of guinea pigs caused prompt skin burns leading to necrosis; when held in contact with guinea pig skin for 2 hr, there was severe skin irritation with extensive necrosis and deep scarring. Five cat eyes and 1 monkey eye were exposed to triethylamine. Animals were exposed to triethylamine at rates of 0.45-0.85 mmol triethylamine/5 min for periods ranging from 1 to 5 min. Corneal epithelial damage occurred at all doses and was severe at higher concentrations. In all cases the epithelium was healed by day 4. Optical discontinuities of the stroma similar to those seen in human patients were observed at all dose levels. Convulsions observed in all rats given oral dosages of 50 mg or more. Triethylamine was tested on 3 day old chicken embryos. Malformations observed were: small eye cup 31%, defects of lids and cornea 73%, defects of beak 4%, encephalocoele or skin pimple in head 23%, open coelom 35%, short back or neck 42%, defects of wings 38%, and edema and lymph blebs 4%. Triethylamine was tested for mutagenicity in the Salmonella/microsome preincubation assay. Triethylamine was tested at doses of 0, 100, 333, 1000, 3333, and 10,000 ug/plate in four Salmonella typhimurium strains (TA98, TA100, TA1535, and TA1537) in the presence and absence of metabolic activation. Triethylamine was negative in these tests.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
致癌性证据
A4:不能归类为人类致癌物。
A4: Not classifiable as a human carcinogen.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
暴露途径
这种物质可以通过吸入、皮肤接触和摄入被身体吸收。
The substance can be absorbed into the body by inhalation, through the skin and by ingestion.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
The pharmacokinetics of the industrially important compound triethylamine (TEA) and its metabolite triethylamine-N-oxide (TEAO) were studied in four volunteers after oral and intravenous administration. TEA was efficiently absorbed from the gastrointestinal (GI) tract, rapidly distributed, and in part metabolized into TEAO. There was no significant first pass metabolism. TEAO was also well absorbed from the GI tract. Within the GI tract, TEAO was reduced into TEA (19%) and dealkylated into diethylamine (DEA; 10%). The apparent volumes of distribution during the elimination phase were 192 liters for TEA and 103 liters for TEAO. Gastric intubation showed that there was a close association between levels of TEA in plasma and gastric juice, the latter levels being 30 times higher. The TEA and TEAO in plasma had half-lives of about 3 and 4 hr, respectively. Exhalation of TEA was minimal. More than 90% of the dose was recovered in the urine as TEA and TEAO. The urinary clearances of TEA and TEAO indicated that in addition to glomerular filtration, tubular secretion takes place. For TEAO at high levels, the secretion appears to be saturable. The present data, in combination with those of earlier studies, indicate that the sum of TEA and TEAO in urine may be used for biological monitoring of exposure to TEA.
The objectives of the study were to assess triethylamine (TEA) exposure in cold-box core making and to study the applicability of urinary TEA measurement in exposure evaluation. Air samples were collected by pumping of air through activated-charcoal-filled glass tubes, and pre- and postshift urine samples were collected. The TEA concentrations were determined by gas chromatography. TEA was measured in air and urine samples from the same shift. Breathing-zone measurements of 19 workers in 3 foundries were included in the study, and stationary and continuous air measurements were also made in the same foundries. Pre- and postshift urine samples were analyzed for their TEA and triethylamine-N-oxide (TEAO) concentrations. The TEA concentration range was 0.3-23 mg/cu m in the breathing zone of the core makers. The mean 8-hr time-weighted average exposure levels were 1.3, 4.0, and 13 mg/cu m for the three foundries. Most of the preshift urinary TEA concentrations were under the detection limit, whereas the postshift urinary TEA concentrations ranged between 5.6 and 171 mmol/mol creatinine. The TEAO concentrations were 4-34% (mean 19%) of the summed TEA + TEAO concentrations. The correlation between air and urine measurements was high (r=0.96, p<0.001). A TEA air concentration of 4.1 mg/cu m (the current ACGIH 8-hr time-weighted average threshold limit value) corresponded to a urinary concentration of 36 mmol/mol creatinine.
In 20 workers studied before, during, and after exposure to triethylamine (TEA) in a polyurethane-foam producing plant the amount of TEA and its metabolite triethylamine-N-oxide (TEAO) excreted in urine corresponded to an average of 80% of the inhaled amount. An average of 27% was TEAO, but with a pronounced interindividual variation. Older subjects excreted more than younger ones; less than 0.3% was excreted as diethylamine.
Provided are cyclic hydrocarbons of Formula I ##STR1## with an aminoalkyl sidechain that are useful for treating phospholipase A2 mediated conditions, diabetes, and obesity.
Development and Evaluation of Novel Phosphotyrosine Mimetic Inhibitors Targeting the Src Homology 2 Domain of Signaling Lymphocytic Activation Molecule (SLAM) Associated Protein
作者:Chi-Yuan Chu、Chun-Ping Chang、Yun-Ting Chou、Handoko、Yi-Ling Hu、Lee-Chiang Lo、Jing-Jer Lin
DOI:10.1021/jm301610q
日期:2013.4.11
Specific interactions between Src homology 2 (SH2) domain-containing proteins and the phosphotyrosine-containing counterparts play significant role in cellular proteintyrosine kinase (PTK) signaling pathways. The SH2domain inhibitors could potentially serve as drug candidates in treating human diseases. Here we have incorporated a novel phosphotyrosine mimetic, which is an unusual amino acid carrying
Synthesis of phosphatidyl-β-glucosyl glycerol containing a dioleoyl diglyceride moiety
作者:C.A.A. van Boeckel、G.M. Visser、J.H. van Boom
DOI:10.1016/s0040-4020(01)82350-4
日期:1985.1
in a two step procedure, to afford compound ; (c) a 2,4-dichlorophenyl protected phosphatidic acid derivative . Compound could be selectively coupled to the primary hydroxyl function of to afford the fully protected glycophospholipid . Finally, removal of the 2,4-dichlorophenyl and TIPS protecting groups from was performed with syn-4-nitrobenzaldoximate and fluoride ions, respectively, to afford glycophospholipid
Probing the Existence of a Metastable Binding Site at the β<sub>2</sub>-Adrenergic Receptor with Homobivalent Bitopic Ligands
作者:Birgit I. Gaiser、Mia Danielsen、Emil Marcher-Rørsted、Kira Røpke Jørgensen、Tomasz M. Wróbel、Mikael Frykman、Henrik Johansson、Hans Bräuner-Osborne、David E. Gloriam、Jesper Mosolff Mathiesen、Daniel Sejer Pedersen
DOI:10.1021/acs.jmedchem.9b00595
日期:2019.9.12
development of bitopicligands aimed at targeting the orthosteric binding site (OBS) and a metastable binding site (MBS) within the same receptor unit. Previous molecular dynamics studies on ligand binding to the β2-adrenergic receptor (β2AR) suggested that ligands pause at transient, less-conserved MBSs. We envisioned that MBSs can be regarded as allosteric binding sites and targeted by homobivalent bitopic
Synthesis of N-Sulfonyl Amidines and Acyl Sulfonyl Ureas from Sulfonyl Azides, Carbon Monoxide, and Amides
作者:Shiao Y. Chow、Luke R. Odell
DOI:10.1021/acs.joc.6b02894
日期:2017.3.3
A Pd-catalyzed and ligand-free carbonylation/cycloaddition/decarboxylation cascade synthesis of sulfonyl amidines from sulfonyl azides and substituted amides at low CO pressure is reported. The reaction proceeds via an initial Pd-catalyzed carbonylative generation of sulfonyl isocyanates from sulfonyl azides, followed by a [2 + 2] cycloaddition with amides and subsequent decarboxylation, which liberates