摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

7,2'-dihydroxy-4',5'-methylenedioxyisoflav-3-ene

中文名称
——
中文别名
——
英文名称
7,2'-dihydroxy-4',5'-methylenedioxyisoflav-3-ene
英文别名
7,2'-Dihydroxy-4',5'-methylenedioxyisoflav-3-ene;3-(6-hydroxy-1,3-benzodioxol-5-yl)-2H-chromen-7-ol
7,2'-dihydroxy-4',5'-methylenedioxyisoflav-3-ene化学式
CAS
——
化学式
C16H12O5
mdl
——
分子量
284.268
InChiKey
NSLWGXNKAGTHTP-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.5
  • 重原子数:
    21
  • 可旋转键数:
    1
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.12
  • 拓扑面积:
    68.2
  • 氢给体数:
    2
  • 氢受体数:
    5

反应信息

  • 作为产物:
    描述:
    参考文献:
    名称:
    Inactivation of pea genes by RNAi supports the involvement of two similar O-methyltransferases in the biosynthesis of (+)-pisatin and of chiral intermediates with a configuration opposite that found in (+)-pisatin
    摘要:
    (+)-赤霉素((+)-pisatin)是豌豆(Pisum sativum L.)中主要的植保素,被认为是由两种手性中间体,即 (-)-7,2'-二羟基-4',5'-甲基二氧基异黄酮[(-)-sophorol] 和 (-)-7,2'-二羟基-4',5'-甲基二氧基异黄醇[(-)-DMDI],经由两条不同的途径合成。这两种中间体在C-3上的绝对构型与(+)-pisatin中C-6a的绝对构型相反。在对豌豆丛根中的异黄酮还原酶(IFR,将7,2'-二羟基-4',5'-甲基二氧基异黄酮(DMD)转化为(-)-sophorol)、sophorol还原酶(SOR,将(-)-sophorol转化为(-)-DMDI)和羟基maackiain-3-O-甲基转移酶(HMM,被认为是(+)-pisatin生物合成的最后一步)进行RNA干扰(RNAi)处理后,发现含有IFR和SOR RNAi构建体的部分丛根系分别积累DMD或(-)-sophorol,而缺乏(+)-pisatin的生物合成,这支持了在(+)-pisatin的生物合成过程中,存在具有与(+)-pisatin相反构型的手性中间体的假说。豌豆蛋白也能将(-)-DMDI转化为无手性的异黄烯,这表明异黄烯可能是通过改变构型以得到(+)-pisatin的手性中间体。含有HMM RNAi构建体的丛根也缺乏(+)-pisatin的生物合成,但并未积累推测的(+)-pisatin前体(+)-6a-羟基maackiain,而是积累了2,7,4'-三羟基异黄酮(TIF)、daidzein、isoformononetin和liquiritigenin。HMM与羟基异黄酮-4'-O-甲基转移酶(HI4'OMT)具有高度相似的氨基酸序列,而后者是一种催化TIF(异黄酮类途径中的早期中间体)甲基化反应的酶。这些四种化合物的积累与(+)-pisatin合成在HI4'OMT催化的步骤处受阻一致,进而导致liquiritigenin和TIF的积累,并将途径转向合成daidzein和isoformononetin,而这两种化合物通常不是由豌豆合成的。之前的成果已在豌豆中鉴定出两个高度相似的"HMMS"。当前的结果表明,这两种O-甲基转移酶都参与了(+)-pisatin的生物合成,其中一种酶在途径早期作为HI4'OMT发挥作用,而另一种则在途径的最终步骤中发挥作用。
    DOI:
    10.1016/j.phytochem.2007.06.013
点击查看最新优质反应信息

文献信息

  • Inactivation of pea genes by RNAi supports the involvement of two similar O-methyltransferases in the biosynthesis of (+)-pisatin and of chiral intermediates with a configuration opposite that found in (+)-pisatin
    作者:Evans Kaimoyo、Hans D. VanEtten
    DOI:10.1016/j.phytochem.2007.06.013
    日期:2008.1
    (+)-Pisatin, the major phytoalexin of pea (Pisum sativum L.), is believed to be synthesized via two chiral intermediates, (-)-7,2'-dihydroxy-4',5'-methylenedioxyisoflavanone [(-)-sophorol] and (-)-7,2'-dihydroxy-4',5'-methylenedioxyisoflavanol [(-)-DMDI]; both have an opposite C-3 absolute configuration to that found at C-6a in (+)-pisatin. The expression of isoflavone reductase (IFR), which converts 7,2'-dihydroxy-4',5'-methylenedioxyisoflavone (DMD) to (-)-sophorol, sophorol reductase (SOR), which converts (-)-sophorol to (-)-DMDI, and hydroxymaackiain-3-O-methyltransferase (HMM), believed to be the last step of (+)-pisatin biosynthesis, were inactivated by RNA-mediated genetic interference (RNAi) in pea hairy roots. Some hairy root lines containing RNAi constructs of IFR and SOR accumulated DMD or (-)-sophorol, respectively, and were deficient in (+)-pisatin biosynthesis supporting the involvement of chiral intermediates with a configuration opposite to that found in (+)-pisatin in the biosynthesis of (+)-pisatin. Pea proteins also converted (-)-DMDI to an achiral isoflavene suggesting that an isoflavene might be the intermediate through which the configuration is changed to that found in (+)-pisatin. Hairy roots containing RNAi constructs of HMM also were deficient in (+)-pisatin biosynthesis, but did not accumulate (+)-6a-hydroxymaackiain, the proposed precursor to (+)-pisatin. Instead, 2,7,4'-trihydroxyisoflavanone (TIF), daidzein, isoformononetin, and liquiritigenin accumulated. HMM has a high amino acid similarity to hydroxyisoflavanone-4'-O-methyltransferase (HI4'OMT), an enzyme that methylates TIF, an early intermediate in the isoflavonoid pathway. The accumulation of these four compounds is consistent with the blockage of the synthesis of (+)-pisatin at the HI4'OMT catalyzed step resulting in the accumulation of liquiritigenin and TIF and the diversion of the pathway to produce daidzein and isoformononetin, compounds not normally made by pea. Previous results have identified two highly similar "HMMs" in pea. The current results suggest that both of these O-methyltransferases are involved in (+)-pisatin biosynthesis and that one functions early in the pathway as HI4'OMT and the second acts at the terminal step of the pathway. (C) 2007 Elsevier Ltd. All rights reserved.
    (+)-赤霉素((+)-pisatin)是豌豆(Pisum sativum L.)中主要的植保素,被认为是由两种手性中间体,即 (-)-7,2'-二羟基-4',5'-甲基二氧基异黄酮[(-)-sophorol] 和 (-)-7,2'-二羟基-4',5'-甲基二氧基异黄醇[(-)-DMDI],经由两条不同的途径合成。这两种中间体在C-3上的绝对构型与(+)-pisatin中C-6a的绝对构型相反。在对豌豆丛根中的异黄酮还原酶(IFR,将7,2'-二羟基-4',5'-甲基二氧基异黄酮(DMD)转化为(-)-sophorol)、sophorol还原酶(SOR,将(-)-sophorol转化为(-)-DMDI)和羟基maackiain-3-O-甲基转移酶(HMM,被认为是(+)-pisatin生物合成的最后一步)进行RNA干扰(RNAi)处理后,发现含有IFR和SOR RNAi构建体的部分丛根系分别积累DMD或(-)-sophorol,而缺乏(+)-pisatin的生物合成,这支持了在(+)-pisatin的生物合成过程中,存在具有与(+)-pisatin相反构型的手性中间体的假说。豌豆蛋白也能将(-)-DMDI转化为无手性的异黄烯,这表明异黄烯可能是通过改变构型以得到(+)-pisatin的手性中间体。含有HMM RNAi构建体的丛根也缺乏(+)-pisatin的生物合成,但并未积累推测的(+)-pisatin前体(+)-6a-羟基maackiain,而是积累了2,7,4'-三羟基异黄酮(TIF)、daidzein、isoformononetin和liquiritigenin。HMM与羟基异黄酮-4'-O-甲基转移酶(HI4'OMT)具有高度相似的氨基酸序列,而后者是一种催化TIF(异黄酮类途径中的早期中间体)甲基化反应的酶。这些四种化合物的积累与(+)-pisatin合成在HI4'OMT催化的步骤处受阻一致,进而导致liquiritigenin和TIF的积累,并将途径转向合成daidzein和isoformononetin,而这两种化合物通常不是由豌豆合成的。之前的成果已在豌豆中鉴定出两个高度相似的"HMMS"。当前的结果表明,这两种O-甲基转移酶都参与了(+)-pisatin的生物合成,其中一种酶在途径早期作为HI4'OMT发挥作用,而另一种则在途径的最终步骤中发挥作用。
  • Dirigent isoflavene-forming PsPTS2: 3D structure, stereochemical, and kinetic characterization comparison with pterocarpan-forming PsPTS1 homolog in pea
    作者:Qingyan Meng、Syed G.A. Moinuddin、Rhodesia M. Celoy、Clyde A. Smith、Robert P. Young、Michael A. Costa、Rachel A. Freeman、Masashi Fukaya、Doo Nam Kim、John R. Cort、Martha C. Hawes、Hans D. van Etten、Pankaj Pandey、Amar G. Chittiboyina、Daneel Ferreira、Laurence B. Davin、Norman G. Lewis
    DOI:10.1016/j.jbc.2024.105647
    日期:2024.3
    were determined using NMR spectroscopy, electronic circular dichroism, and molecular orbital analyses. PsPTS2 efficiently converted -(3,4)-DMDI into DMDIF 20-fold faster than the -(3,4)-isomer. The 4-configured substrate’s near β-axial OH orientation significantly enhanced its leaving group abilities in generating A-ring mono-quinone methide (QM), whereas 4-isomer’s α-equatorial-OH was a poorer leaving
    豌豆植物抗毒素 (−)-maackiain 和 (+)-pisatin 具有相反的 C6a/C11a 构型,但在生物合成上如何发生这种情况尚不清楚。豌豆直接蛋白 (DP) PsPTS2 生成 7,2ʹ-二羟基-4ʹ,5ʹ-亚甲基二氧基异黄烷-3-烯 (DMDIF),并对四种可能的 7,2ʹ-二羟基-4ʹ,5ʹ-亚甲基二氧基异黄烷-4-醇 (DMDI) 具有立体选择性)立体异构体进行了研究。使用核磁共振光谱、电子圆二色性和分子轨道分析确定立体异构体构型。 PsPTS2 有效地将 -(3,4)-DMDI 转化为 DMDIF,速度比 -(3,4)-异构体快 20 倍。 4-构型底物的近β轴OH取向显着增强了其生成A环单醌甲基化物(QM)的离去基团能力,而4-异构体的α-赤道-OH是较差的离去基团。对接模拟表明4-构型的β-轴向OH距离Asp最近,而4-异构体的α-赤道OH距离更远。 -(3,4)-
  • (+)-Pisatin biosynthesis: From (−) enantiomeric intermediates via an achiral 7,2′-dihydroxy-4′,5′-methylenedioxyisoflav-3-ene
    作者:Rhodesia M. Celoy、Hans D. VanEtten
    DOI:10.1016/j.phytochem.2013.10.017
    日期:2014.2
    (+)-Pisatin, produced by peas (Pisum sativum L.), is an isoflavonoid derivative belonging to the pterocarpan family. It was the first chemically identified phytoalexin, and subsequent research has demonstrated that most legumes produce pterocarpans with the opposite stereochemistry. Studies on the biosynthesis of (+)-pisatin have shown that (-) enantiomeric compounds are intermediates in (+)-pisatin synthesis
    (+)-Pisatin 由豌豆 (Pisum sativum L.) 产生,是属于紫檀家族的异黄酮衍生物。这是第一个经过化学鉴定的植物抗毒素,随后的研究表明,大多数豆科植物产生具有相反立体化学的紫檀素。对(+)-pisatin生物合成的研究表明(-)对映体化合物是(+)-pisatin合成的中间体。然而,从(-)-7,2'-二羟基-4',5'-亚甲二氧基异黄酮[(-)-槐酚]中间体到(+)-6a-羟基槐素中间体的步骤尚未确定。使用硼氢化钠 (NaBH4) 对 (-)-槐酚进行化学还原,生成 (-)-7,2'-二羟基-4',5'-亚甲基二氧基异黄醇 [(-)-DMDI] 的两种异构体,其最佳紫外吸光度为 299.3 和分别为 300.5 nm。相反,通过豌豆酶槐醇还原酶 (SOR) 酶促还原 (-)-槐酚仅产生 299.3 nm (-)-DMDI 异构体。 299.3 nm (-)-DMDI
查看更多