摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-(6-氯-9H-嘌呤-9-基)-1-脱氧-2,3-O-异亚丙基-beta-D-呋喃核糖酰氯 | 104940-65-0

中文名称
1-(6-氯-9H-嘌呤-9-基)-1-脱氧-2,3-O-异亚丙基-beta-D-呋喃核糖酰氯
中文别名
——
英文名称
1'-deoxy-1'-(6-chloro-9H-purin-9-yl)2',3'-O-isopropylidene-β-D-ribofuranosyl chloride
英文别名
1-(6-Chloro-9H-purin-9-yl)-1-deoxy-2,3-O-(1-methylethylidene)-b-D-Ribofuranuronoyl chloride;(3aR,4R,6S,6aS)-4-(6-chloropurin-9-yl)-2,2-dimethyl-3a,4,6,6a-tetrahydrofuro[3,4-d][1,3]dioxole-6-carbonyl chloride
1-(6-氯-9H-嘌呤-9-基)-1-脱氧-2,3-O-异亚丙基-beta-D-呋喃核糖酰氯化学式
CAS
104940-65-0
化学式
C13H12Cl2N4O4
mdl
——
分子量
359.169
InChiKey
QEFQUMARELTVCC-BSFVXNEUSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    523.0±60.0 °C(Predicted)
  • 密度:
    1.87

计算性质

  • 辛醇/水分配系数(LogP):
    1.6
  • 重原子数:
    23
  • 可旋转键数:
    2
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.54
  • 拓扑面积:
    88.4
  • 氢给体数:
    0
  • 氢受体数:
    7

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2
    • 3
    • 4
    • 5

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Structure-Activity Relationships of N6-Benzyladenosine-5'-uronamides as A3-Selective Adenosine Agonists
    摘要:
    Adenosine analogues modified at the 5'-position as uronamides and/or as N-6-benzyl derivatives were synthesized. These derivatives were examined for affinity in radioligand binding assays at the newly discovered rat brain A(3) adenosine receptor and at rat brain A(1) and Az, receptors. 5'Uronamide substituents favored AS selectivity in the order N-methyl > N-ethyl approximate to unsubstituted carboxamide > N-cyclopropyl. 5'-(N-Methylcarboxamido)-N-6-benzyladenosine was 37-56-fold more selective for Ag receptors. Potency at A(3) receptors was enhanced upon substitution of the benzyl substituent with nitro and other groups. 5'-N-Methyluronamides and N-6-(3-substituted-benzyl) adenosines are optimal for potency and selectivity at A(3) receptors. A series of 3-(halobenzyl)5'-N-ethyluronamide derivatives showed the order of potency at A(1) and A(2)a receptors of I similar to Br > Cl > F. At A(3) receptors the 3-F derivative was weaker than the other halo derivatives. 5'-N-Methyl-N-6- (3-iodobenzyl) adenosine displayed a K-i value of 1.1 nM at A(3) receptors and selectivity versus A(1) and A(2a), receptors of 50-fold. A series of methoxybenzyl derivatives showed that a C-methoxy group best favored A(3) selectivity. A 4-sulfobenzyl derivative was a specific ligand at A(3) receptors of moderate potency. An aryl amino derivative was prepared as a probe for radioiodination and receptor cross-linking.
    DOI:
    10.1021/jm00031a014
  • 作为产物:
    参考文献:
    名称:
    New Fluorescent Adenosine A1-Receptor Agonists That Allow Quantification of Ligand−Receptor Interactions in Microdomains of Single Living Cells
    摘要:
    Fluorescence spectroscopy is becoming a valuable addition to the array of techniques available for scrutinizing ligand-receptor interactions in biological systems. In particular, scanning confocal microscopy and fluorescence correlation spectroscopy (FCS) allow the noninvasive imaging and quantification of these interactions in single living cells. To address the emerging need for fluorescently labeled ligands to support these technologies, we have developed a series of red-emitting agonists for the human adenosine A(1)-receptor that, collectively, are N-6-aminoalkyl derivatives of adenosine or adenosine 5'-N-ethyl carboxamide. The agonists, which incorporate the commercially available fluorophore BODIPY [630/650], retain potent and efficacious agonist activity, as demonstrated by their ability to inhibit cAMP accumulation in chinese hamster ovary cells expressing the human adenosine A(1)-receptor. Visualization and confirmation of ligand-receptor interactions at the cell membrane were accomplished using confocal microscopy, and their suitability for use in FCS was demonstrated by quantification of agonist binding in small areas of cell membrane.
    DOI:
    10.1021/jm061279i
点击查看最新优质反应信息

文献信息

  • N6-Substituted N-alkyladenosine-5'-uronamides: bifunctional ligands having recognition groups for A1 and A2 adenosine receptors
    作者:R. A. Olsson、Shozo Kusachi、Robert D. Thompson、Dieter Ukena、William Padgett、John W. Daly
    DOI:10.1021/jm00159a020
    日期:1986.9
    The coronary vasoactivity of N-ethyl-1'-deoxy-1'-(6-amino-9H-purin-9-yl)-beta-D-ribofuranuronamide (NECA, 1) is over 2 orders of magnitude greater than that of adenosine, and the vasoactivity of certain N6-substituted adenosines is as much as 1 order of magnitude greater. Such results suggest that a combination of appropriate modifications at N6 and C-5' might additively augment the agonist potency of adenosine. At low temperatures 1-deoxy-1-(6-chloro-9H-purin-9-yl)-2',3'-O-isopropylidene- beta-D-ribofuranosyl chloride (5), obtained in three steps from inosine, reacts with amines to yield uronamides. The subsequent reaction of such uronamides with amines at elevated temperatures displaces the purine 6-chloro group to yield, after deblocking, N-alkyl(or aryl)-N6-alk(ar)yl-adenosine-5'-uronamides. At the coronary artery A2 receptor the potency of N6-modified analogues of 1 is similar to that of the N6-substituted adenosine, rather than equal to or greater than 1. As agonists in the A2 receptor-mediated stimulation of adenylate cyclase in plasma membranes of PC12 pheochromocytoma cells or human platelets, N6-substituted analogues of 1 are intermediate between the high potency of 1 and the lower potency of the N6-substituted adenosines. At the A1 receptor of rat brain the potency of an N6-substituted analogue of 1 is often greater than that of the corresponding N6-substituted adenosine. At all four receptors, replacing the ethyl group of N-ethyl-N6-3-pentyladenosine-5'-uronamide by larger alkyl groups reduces potency; amides of secondary amines are inactive or have only marginal activity. Analogues of 1 containing a chiral center in the N6 substituent retain the stereoselectivity characteristic of each of the four receptors. Thus, at either A1 or A2 adenosine receptors, adenosine analogues interact with both the N6 and the C-5' receptor regions. However, the effects of N6 and C-5' modifications on potency are less than additive, evidence that the interaction of a substituent with its receptor region influences the interaction of other substituents with their respective receptor regions.
  • Structure-Activity Relationships of N6-Benzyladenosine-5'-uronamides as A3-Selective Adenosine Agonists
    作者:Carola Gallo-Rodriguez、Xiao-duo Ji、Neli Melman、Barry D. Siegman、Lawrence H. Sanders、Jeraldine Orlina、Bilha Fischer、Quanlong Pu、Mark E. Olah
    DOI:10.1021/jm00031a014
    日期:1994.3
    Adenosine analogues modified at the 5'-position as uronamides and/or as N-6-benzyl derivatives were synthesized. These derivatives were examined for affinity in radioligand binding assays at the newly discovered rat brain A(3) adenosine receptor and at rat brain A(1) and Az, receptors. 5'Uronamide substituents favored AS selectivity in the order N-methyl > N-ethyl approximate to unsubstituted carboxamide > N-cyclopropyl. 5'-(N-Methylcarboxamido)-N-6-benzyladenosine was 37-56-fold more selective for Ag receptors. Potency at A(3) receptors was enhanced upon substitution of the benzyl substituent with nitro and other groups. 5'-N-Methyluronamides and N-6-(3-substituted-benzyl) adenosines are optimal for potency and selectivity at A(3) receptors. A series of 3-(halobenzyl)5'-N-ethyluronamide derivatives showed the order of potency at A(1) and A(2)a receptors of I similar to Br > Cl > F. At A(3) receptors the 3-F derivative was weaker than the other halo derivatives. 5'-N-Methyl-N-6- (3-iodobenzyl) adenosine displayed a K-i value of 1.1 nM at A(3) receptors and selectivity versus A(1) and A(2a), receptors of 50-fold. A series of methoxybenzyl derivatives showed that a C-methoxy group best favored A(3) selectivity. A 4-sulfobenzyl derivative was a specific ligand at A(3) receptors of moderate potency. An aryl amino derivative was prepared as a probe for radioiodination and receptor cross-linking.
  • New Fluorescent Adenosine A<sub>1</sub>-Receptor Agonists That Allow Quantification of Ligand−Receptor Interactions in Microdomains of Single Living Cells
    作者:Richard J. Middleton、Stephen J. Briddon、Yolande Cordeaux、Andrew S. Yates、Clare L. Dale、Michael W. George、Jillian. G. Baker、Stephen J. Hill、Barrie Kellam
    DOI:10.1021/jm061279i
    日期:2007.2.1
    Fluorescence spectroscopy is becoming a valuable addition to the array of techniques available for scrutinizing ligand-receptor interactions in biological systems. In particular, scanning confocal microscopy and fluorescence correlation spectroscopy (FCS) allow the noninvasive imaging and quantification of these interactions in single living cells. To address the emerging need for fluorescently labeled ligands to support these technologies, we have developed a series of red-emitting agonists for the human adenosine A(1)-receptor that, collectively, are N-6-aminoalkyl derivatives of adenosine or adenosine 5'-N-ethyl carboxamide. The agonists, which incorporate the commercially available fluorophore BODIPY [630/650], retain potent and efficacious agonist activity, as demonstrated by their ability to inhibit cAMP accumulation in chinese hamster ovary cells expressing the human adenosine A(1)-receptor. Visualization and confirmation of ligand-receptor interactions at the cell membrane were accomplished using confocal microscopy, and their suitability for use in FCS was demonstrated by quantification of agonist binding in small areas of cell membrane.
查看更多