摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

橙皮素 7-O-葡萄糖甙 | 31712-49-9

中文名称
橙皮素 7-O-葡萄糖甙
中文别名
橙皮素-7-O-葡萄糖苷;橙皮素7-O-葡萄糖苷;橙皮素单葡萄糖苷;橙皮素7-O-葡萄糖甙
英文名称
hesperetin 7-O-β-D-glucopyranoside
英文别名
hesperetin-7-O-glucoside;hesperetin-7-glucoside;hesperetin-7-O-β-D-glucoside;hesperitin 7-β-D-glucopyranoside;Hesperetin 7-O-glucoside;(2S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,3-dihydrochromen-4-one
橙皮素 7-O-葡萄糖甙化学式
CAS
31712-49-9
化学式
C22H24O11
mdl
——
分子量
464.426
InChiKey
ADSYMQORONDIDD-ZJHVPRRPSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    206-207 °C
  • 沸点:
    807.1±65.0 °C(Predicted)
  • 密度:
    1.569±0.06 g/cm3(Predicted)
  • 溶解度:
    溶于氯仿、二氯甲烷、乙酸乙酯、DMSO、丙酮等。

计算性质

  • 辛醇/水分配系数(LogP):
    0.6
  • 重原子数:
    33
  • 可旋转键数:
    5
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.41
  • 拓扑面积:
    175
  • 氢给体数:
    6
  • 氢受体数:
    11

安全信息

  • 储存条件:
    存储条件:2-8℃,干燥且密封保存。

SDS

SDS:87ca392b04ae85565dda4e99c7e8580e
查看

制备方法与用途

生物活性

Hesperetin 7-O-glucoside 是通过 Hesperidin 的酶促转化产生的。这种化合物是一种有效的人 HMG-CoA 还原酶抑制剂,还能有效抑制幽门螺杆菌的生长,并具有降压作用。

用途
  • 保健品和化妆品原料
  • 甜味剂前体

此外,Hesperetin 7-O-glucoside 还可用于含量测定、鉴定以及药理实验等。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    橙皮素 7-O-葡萄糖甙 在 β-D-glucosidase 作用下, 以 aq. buffer 为溶剂, 反应 0.58h, 生成 橙皮素
    参考文献:
    名称:
    Purification and Characterization of a Naringinase from Aspergillus aculeatus JMUdb058
    摘要:
    A naringinase from Aspergillus aculeatus JMUdb058 was purified, identified, and characterized. This naringinase had a molecular mass (MW) of 348 kDa and contained four subunits with MWs of 100, 95, 84, and 69 kDa. Mass spectrometric analysis revealed that the three larger subunits were beta-D-glucosidases and that the smallest subunit was an alpha-L-rhamnosidase. The naringinase and its alpha-L-rhamnosidase and beta-D-glucosidase subunits all had optimal activities at approximately pH 4 and 50 degrees C, and they were stable between pH 3 and 6 and below 50 degrees C. This naringinase was able to hydrolyze naringin, aesculin, and some other glycosides. The enzyme complex had a K-m value of 0.11 mM and a k(cat)/K-m ratio of 14 034 s(-1) mM(-1) for total naringinase. Its alpha-L-rhamnosidase and beta-D-glucosidase subunits had K-m values of 0.23 and 0.53 mM, respectively, and k(cat)/K-m ratios of 14 146 and 7733 s(-1) m(-1), respectively. These results provide in-depth insight into the structure of the naringinase complex and the hydrolyses of naringin and other glycosides.
    DOI:
    10.1021/jf303512q
  • 作为产物:
    描述:
    橙皮甙 在 α-L-rhamnosidase 作用下, 以 aq. buffer 为溶剂, 反应 0.58h, 生成 橙皮素 7-O-葡萄糖甙
    参考文献:
    名称:
    Purification and Characterization of a Naringinase from Aspergillus aculeatus JMUdb058
    摘要:
    A naringinase from Aspergillus aculeatus JMUdb058 was purified, identified, and characterized. This naringinase had a molecular mass (MW) of 348 kDa and contained four subunits with MWs of 100, 95, 84, and 69 kDa. Mass spectrometric analysis revealed that the three larger subunits were beta-D-glucosidases and that the smallest subunit was an alpha-L-rhamnosidase. The naringinase and its alpha-L-rhamnosidase and beta-D-glucosidase subunits all had optimal activities at approximately pH 4 and 50 degrees C, and they were stable between pH 3 and 6 and below 50 degrees C. This naringinase was able to hydrolyze naringin, aesculin, and some other glycosides. The enzyme complex had a K-m value of 0.11 mM and a k(cat)/K-m ratio of 14 034 s(-1) mM(-1) for total naringinase. Its alpha-L-rhamnosidase and beta-D-glucosidase subunits had K-m values of 0.23 and 0.53 mM, respectively, and k(cat)/K-m ratios of 14 146 and 7733 s(-1) m(-1), respectively. These results provide in-depth insight into the structure of the naringinase complex and the hydrolyses of naringin and other glycosides.
    DOI:
    10.1021/jf303512q
点击查看最新优质反应信息

文献信息

  • Regioselective O-glycosylation of flavonoids by fungi Beauveria bassiana, Absidia coerulea and Absidia glauca
    作者:Sandra Sordon、Jarosław Popłoński、Tomasz Tronina、Ewa Huszcza
    DOI:10.1016/j.bioorg.2019.01.046
    日期:2019.12
    bassiana AM 278 strain catalyzed the methylglucose attachment reactions to the flavonoid molecule at positions C7 and C3′. The application of the Absidia genus (A. coerulea AM 93, A. glauca AM 177) as the biocatalyst resulted in the formation of glucosides with a sugar molecule present at C7 and C3′ positions of flavonoids skeleton. Nine of obtained products have not been previously reported in the literature
    在本研究中,物种:白僵菌,蓝色犁头霉和灰绿犁头霉在黄酮白杨素芹菜素木犀草素香叶木素)和黄烷酮松属素柚皮素圣草酚橙皮素)的生物转化中使用。该球孢白僵菌AM 278应变催化的甲基葡萄糖附着反应以类黄酮分子在位置C7和C3'。利用Absidia属(A. coerulea AM 93,A。glauca AM 177)作为生物催化剂可导致在类黄酮骨架的C7和C3'位置上形成带有糖分子的糖苷。先前没有文献报道九种获得的产品。
  • Transglycosylation specificity of Acremonium sp. α-rhamnosyl-β-glucosidase and its application to the synthesis of the new fluorogenic substrate 4-methylumbelliferyl-rutinoside
    作者:Laura S. Mazzaferro、Lucrecia Piñuel、Rosa Erra-Balsells、Silvana L. Giudicessi、Javier D. Breccia
    DOI:10.1016/j.carres.2011.11.008
    日期:2012.1
    fungal diglycosidase α-rhamnosyl-β-glucosidase was explored. The biocatalyst was shown to have broad acceptor specificity toward aliphatic and aromatic alcohols. This feature allowed the synthesis of the diglycoconjugated fluorogenic substrate 4-methylumbelliferyl-rutinoside. The synthesis was performed in one step from the corresponding aglycone, 4-methylumbelliferone, and hesperidin as rutinose donor
    探索了真菌二糖苷酶α-鼠李糖基-β-葡萄糖苷酶的转糖基化潜力。该生物催化剂显示出对脂族和芳族醇具有广泛的受体特异性。该特征允许合成二糖缀合的荧光底物4-甲基伞形酮-芸香糖苷。由相应的糖苷配基,4-甲基伞形酮橙皮苷作为芸香糖供体,一步一步进行合成。使用固定化的生物催化剂,在搅拌的反应器中生产4-甲基伞形酮-芸香糖苷,收率约为糖受体的16%。通过溶剂萃取和硅胶色谱法纯化化合物。记录的[M + Na](+)离子的MALDI-TOF / TOF数据与理论单同位素质量相关([M + Na](+)的计算值:507.44 m / z;实测值[M + Na](+) :507.465 m / z)。
  • Identification of a flavonoid 7-<i>O</i>-glucosyltransferase from <i>Andrographis paniculata</i>
    作者:Yuan Li、Wei Gao、Lu-Qi Huang
    DOI:10.1080/10286020.2019.1680644
    日期:2020.3.3
    an important traditional medicinal herb in which flavonoids are part of the primary specialized metabolites. A flavonoid glucosyltransferase with broad substrate spectrum (named ApUGT3) was successfully identified by screening homologous glycosyltransferase genes from A. paniculata. The enzyme displayed glycosylation activity toward multiple flavonoids in vitro, and the major products were identified
    穿心莲是一种重要的传统草药,其中黄酮类化合物是主要的专门代谢产物的一部分。通过筛选来自A. paniculata的同源糖基转移酶基因,成功鉴定了具有宽底物谱的类黄酮葡萄糖基转移酶(命名为ApUGT3)。该酶在体外显示出对多种类黄酮的糖基化活性,并且主要产物被鉴定为7-O-葡糖苷。系统发育分析表明,ApUGT3是来自棘皮科的第一个报道的糖簇转移酶,属于簇I,表明ApUGT3是该亚簇的新黄酮糖基转移酶。该酶可能用作强大的糖基化催化剂,以修饰类黄酮化合物并改善其生物活性。[公式:见文字]。
  • Synthesis of Daidzein Glycosides, α-Tocopherol Glycosides, Hesperetin Glycosides by Bioconversion and Their Potential for Anti-Allergic Functional-Foods and Cosmetics
    作者:Yuya Fujitaka、Hiroki Hamada、Daisuke Uesugi、Atsuhito Kuboki、Kei Shimoda、Takafumi Iwaki、Yuya Kiriake、Tomohiro Saikawa
    DOI:10.3390/molecules24162975
    日期:——
    transformed by cultured Nicotiana tabacum cells to 7-β-glucoside and 7-β-gentiobioside of daidzein, and 3′- and 7-β-glucosides, 3′,7-β-diglucoside, and 7-β-gentiobioside of hesperetin. Daidzein and α-tocopherol were glycosylated by galactosylation with β-glucosidase to give 4′- and 7-β-galactosides of daidzein, which were new compounds, and α-tocopherol 6-β-galactoside. These nine glycosides showed higher anti-allergic
    大豆苷元是一种常见的异黄酮,具有抗炎、抗过敏、抗衰老等多种生物学作用。α-生育酚维生素 E 活性最高的生育酚异构体,包括抗过敏活性和抗癌活性。橙皮素是一种黄酮,具有强大的抗炎作用。这些化合物具有不溶于、口服后吸收差等缺点。生物活性化合物的糖基化可以提高其溶性、理化稳定性、肠道吸收和生物半衰期,并改善其生物和药理特性。它们通过培养的烟草细胞转化为黄豆苷元的 7-β-葡萄糖苷和 7-β-龙胆二糖苷,以及黄豆苷元的 3'-和 7-β-葡萄糖苷、3',7-β-二葡萄糖苷和 7-β-龙胆二糖苷。橙皮素。黄豆苷元和α-生育酚通过β-葡萄糖苷酶的半乳糖基化进行糖基化,得到黄豆苷元的4'-和7-β-半乳糖苷,它们是新化合物,以及α-生育酚6-β-半乳糖苷。与它们各自的苷元相比,这九种苷表现出更高的抗过敏活性,即对从大鼠腹膜肥大细胞释放组胺的抑制活性。此外,这些糖苷比相应的苷元表现出更高的酪氨酸酶抑制
  • Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography
    作者:Věra Špačková、Jiří Pazourek
    DOI:10.2478/s11696-012-0302-8
    日期:2013.1.1
    Abstract

    A method for carbohydrate isomers (saccharide units) identification in flavonoid glycosides after hydrolysis by an HPLC system with two detectors (diode array UV-VIS detector and evaporative light scattering detector) was set up in this work. Experimental procedure was optimized with two types of model glycosides, namely rutin and hesperidin. The model glycosides were hydrolyzed to saccharide units and aglycone parts; the aglycone was characterized by its UV-VIS spectrum and the saccharide unit was identified by its retention time and elution profile (anomeric signals). Acidic and enzymatic hydrolyses were compared in the first step of the method; in acidic hydrolysis, trifluoracetic acid was used, while glucosidase, galactosidase, and hesperidinase were used in enzymatic hydrolysis. A complete enzymatic hydrolysis was achieved with hesperidin and neohesperidin, but not with 3-O-glycosides. The method was applied for the identification of a glycone from a glycoside isolated from Polygonum lapathifolium (Polygonaceae sp.).

    在本研究中,建立了一种利用高效液相色谱系统和两个检测器(二极管数组紫外可见光检测器和蒸发光散射检测器)鉴定黄酮类糖苷解后碳水化合物异构体(糖基单元)的方法。通过两种模型糖苷(芦丁橙皮苷)的实验过程进行了优化。模型糖苷被解成糖基单元和无糖基部分。无糖基部分通过其紫外可见光谱进行表征,而糖基单元则通过其保留时间和洗脱曲线(异构信号)进行鉴定。在方法的第一步中比较了酸性和酶解解。在酸性解中,使用三氟乙酸,而在酶解解中使用葡萄糖苷酶、半乳糖苷酶和橙皮苷酶。用橙皮苷新橙皮苷实现了完全的酶解解,但对于3-O-糖苷则未能实现完全酶解解。该方法被应用于从虎杖属植物(蓼科植物)分离的糖苷中鉴定糖基。
查看更多