... Salinomycin (SAL), a broad spectrum antibiotic and a coccidiostat has been found to counter tumour resistance and kill cancer stem cells with better efficacy than the existing chemotherapeutic agents; paclitaxel and doxorubicin. This refocused its importance for treatment of human cancers. In this study, we studied the in vitro drug metabolism and pharmacokinetic parameters of SAL. SAL undergoes rapid metabolism in liver microsomes and has a high intrinsic clearance. SAL metabolism is mainly mediated by CYP enzymes; CYP3A4 the major enzyme metabolising SAL. The percent plasma protein binding of SAL in human was significantly lower as compared to mouse and rat plasma. CYP inhibition was carried out by chemical inhibition and recombinant enzyme studies. SAL was found to be a moderate inhibitor of CYP2D6 as well as CYP3A4. As CYP3A4 was the major enzyme responsible for metabolism of SAL, in vivo pharmacokinetic study in rats was done to check the effect of concomitant administration of Ketoconazole (KTC) on SAL pharmacokinetics. KTC, being a selective CYP3A4 inhibitor increased the systemic exposure of SAL significantly to 7-fold in AUC0-a and 3-fold increase in Cmax of SAL in rats with concomitant KTC administration.
IDENTIFICATION AND USE: Salinomycin is a veterinary drug used for the prevention of coccidiosis in broiler, roaster and replacement chickens caused by Eimeria tenella, E. necatrix, E. acervulina, E. maxima, E. brunetti and E. mivati. It is also used for the prevention of coccidiosis in quail caused by Eimeria dispersa and E. lettyae. HUMAN EXPOSURE AND TOXICITY: The cytotoxic and genotoxic effects of salinomycin were investigated in human non-malignant cells. Primary human nasal mucosa cells (monolayer and mini organ cultures) and peripheral blood lymphocytes from 10 individuals were used to study the cytotoxic effects of salinomycin (0.1-175 uM) by annexin-propidiumiodide- and MTT-test. The comet assay was performed to evaluate DNA damage. Additionally, the secretion of interleukin-8 was analyzed by ELISA. Flow cytometry and MTT assay revealed significant cytotoxic effects in nasal mucosa cells and lymphocytes at low salinomycin concentrations of 10-20 uM. No genotoxic effects could be observed. IL-8 secretion was elevated at 5 uM. Salinomycin-induced cytotoxic and pro-inflammatory effects were seen at concentrations relevant for anti-cancer treatment. ANIMAL STUDIES: There are numerous reports of fatal outcomes when salinomycin is accidently fed to various animals. A sudden outbreak of mortality in one house of 600 48-week-old male breeder turkeys on a five-house turkey breeder farm was suspected to be feed-related. The turkeys gasped and became recumbent; 21.7% of affected turkeys died. Histological lesions, limited to skeletal muscle, consisted of degeneration and necrosis and were judged compatible with ionophore toxicosis. Feed samples from the affected house were analyzed and shown to contain 13.4 to 18.4 g of salinomycin per ton of feed. To further study the effects of salinomycin on turkeys, five 7-day trials using 336, 24, 24, 40, and 40 male turkeys when 7, 11, 15, 27, and 32 weeks of age, respectively. Salinomycin became more toxic as the age of the turkeys increased. When 7-week-old turkeys were fed diets containing 44 or 66 ppm salinomycin, only 1 of 84 died; when turkeys 27 or 32 weeks of age were fed those amounts, 13 of 20 died. Salinomycin at 22 ppm tended to depress rate of growth at young ages and to prevent or decrease growth and to increase mortality at older ages. Accidental poisonings were also reported in six horses fed salinomycin. The range of signs, including anorexia, colic, weakness and ataxia bore similarities to those described in horses poisoned with the related ionophore monensin. In another poisoning, horses were fed a concentrate containing 61 mg/kg salinomycin as faulty prepared by the manufacturer. All horses developed severe clinical signs of intoxication. Despite therapy eight horses died within three to six days. Ten others became recumbent and had to be euthanized. Only six horses survived. The dominating laboratory results were very high enzyme levels and alkalosis. The most characteristic clinical change appeared as paralysis of the hindlimbs. An outbreak of toxic polyneuropathy in cats that had ingested dry cat food contaminated with salinomycin has also been reported. Epidemiologic and clinical data were collected from 823 cats, or about 1% of the cats at risk. In 21 affected cats, postmortem examination was performed. The affected cats had acute onset of lameness and paralysis of the hindlimbs followed by the forelimbs. Clinical and pathologic examination indicated a distal polyneuropathy involving both the sensory and motor nerves. The clinical signs and pathology in an outbreak of toxicity in feedlot cattle attributed to the ingestion of toxic levels of salinomycin over an extended period of 11 weeks have also been reported. Thirty-nine out of 380 cattle developed signs consistent with cardiac failure and 8 of these died. Clinical signs included dyspnea, tachypnea, tachycardia, and exercise intolerance. Two cattle were necropsied and in one there were macroscopic lesions suggestive of congestive heart failure, namely pulmonary edema, hydrothorax and hepatomegaly. Histopathology revealed a chronic cardiomyopathy characterized principally by extensive myocardial fiber atrophy with multifocal hypertrophy and interstitial and replacement fibrosis. Hepatic and pulmonary lesions were consistent with those of congestive cardiac failure. Finally, 100% mortality was reported in a herd of sheep that were given feed containing salinomycin. The morning after the feeding, 78 sheep were found dead and one of them showed convulsive seizures. Postmortem examination revealed pulmonary congestion and edema, hemorrhages in abomasum, large pale kidney and white streak lines in myocardium.