摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

α-D-galactosyl-(1→3)-1D-myo-inositol | 3687-64-7

中文名称
——
中文别名
——
英文名称
α-D-galactosyl-(1→3)-1D-myo-inositol
英文别名
α-D-galactopyranosyl-(1<*>1L)-myo-inositol;O-α-D-galactopyranosyl-(1-3)-sn-myo-inositol;1-O-(α-D-galactopyranosyl)-myo-inositol;galactinol;(2S)-O1-α-D-galactopyranosyl-myo-inositol;(2S)-O1-α-D-Galactopyranosyl-myo-inosit;D-1-O-α-D-Galactopyranosyl-mesoinosit; Galaktinol
α-D-galactosyl-(1→3)-1D-myo-inositol化学式
CAS
3687-64-7
化学式
C12H22O11
mdl
——
分子量
342.3
InChiKey
VCWMRQDBPZKXKG-DXNLKLAMSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    114 °C
  • 沸点:
    609.9±55.0 °C(predicted)
  • 密度:
    1.84±0.1 g/cm3(Temp: 20 °C; Press: 760 Torr)(predicted)
  • 溶解度:
    轻微溶于水
  • 稳定性/保质期:
    在常温常压下保持稳定

计算性质

  • 辛醇/水分配系数(LogP):
    -6.01
  • 重原子数:
    23.0
  • 可旋转键数:
    3.0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    200.53
  • 氢给体数:
    9.0
  • 氢受体数:
    11.0

安全信息

  • 海关编码:
    29389090
  • 储存条件:
    常温下应存于避光、通风且干燥的地方,并密封保存。

SDS

SDS:0004fb99d8b2902e9c664e16dcc6fe36
查看
肌醇半乳糖苷水合物 修改号码:6

模块 1. 化学品
产品名称: Galactinol Hydrate
修改号码: 6

模块 2. 危险性概述
GHS分类
物理性危害 未分类
健康危害 未分类
环境危害 未分类
GHS标签元素
图标或危害标志 无
信号词 无信号词
危险描述 无
防范说明 无

模块 3. 成分/组成信息
单一物质/混和物 单一物质
化学名(中文名): 肌醇半乳糖苷水合物
百分比: >99.0%(HPLC)
CAS编码: 3687-64-7
俗名: 1-O-α-D-Galactopyranosyl-L-myo-inositol Hydrate
分子式: C12H22O11·xH2O

模块 4. 急救措施
吸入: 将受害者移到新鲜空气处,保持呼吸通畅,休息。若感不适请求医/就诊。
皮肤接触: 立即去除/脱掉所有被污染的衣物。用水清洗皮肤/淋浴。
若皮肤刺激或发生皮疹:求医/就诊。
眼睛接触: 用水小心清洗几分钟。如果方便,易操作,摘除隐形眼镜。继续清洗。
如果眼睛刺激:求医/就诊。
食入: 若感不适,求医/就诊。漱口。
紧急救助者的防护: 救援者需要穿戴个人防护用品,比如橡胶手套和气密性护目镜。

模块 5. 消防措施
合适的灭火剂: 干粉,泡沫,雾状水,二氧化碳
肌醇半乳糖苷水合物 修改号码:6

模块 5. 消防措施
特定方法: 从上风处灭火,根据周围环境选择合适的灭火方法。
非相关人员应该撤离至安全地方。
周围一旦着火:如果安全,移去可移动容器。
消防员的特殊防护用具: 灭火时,一定要穿戴个人防护用品。

模块 6. 泄漏应急处理
个人防护措施,防护用具, 使用个人防护用品。远离溢出物/泄露处并处在上风处。
紧急措施: 泄露区应该用安全带等圈起来,控制非相关人员进入。
环保措施: 防止进入下水道。
控制和清洗的方法和材料: 清扫收集粉尘,封入密闭容器。注意切勿分散。附着物或收集物应该立即根据合适的
法律法规处置。

模块 7. 操作处置与储存
处理
技术措施: 在通风良好处进行处理。穿戴合适的防护用具。防止粉尘扩散。处理后彻底清洗双手
和脸。
注意事项: 如果粉尘或浮质产生,使用局部排气。
操作处置注意事项: 避免接触皮肤、眼睛和衣物。
贮存
储存条件: 保持容器密闭。存放于凉爽、阴暗处。
存放于惰性气体环境中。
防湿。
远离不相容的材料比如氧化剂存放。
易湿
包装材料: 依据法律。

模块 8. 接触控制和个体防护
工程控制: 尽可能安装封闭体系或局部排风系统,操作人员切勿直接接触。同时安装淋浴器和洗
眼器。
个人防护用品
呼吸系统防护: 防尘面具。依据当地和政府法规。
手部防护: 防护手套。
眼睛防护: 安全防护镜。如果情况需要,佩戴面具。
皮肤和身体防护: 防护服。如果情况需要,穿戴防护靴。

模块 9. 理化特性
固体
外形(20°C):
外观: 晶体-粉末
颜色: 白色类白色
气味: 无资料
pH: 无数据资料
熔点: 221°C
沸点/沸程 无资料
闪点: 无资料
爆炸特性
爆炸下限: 无资料
爆炸上限: 无资料
密度: 无资料
溶解度:
肌醇半乳糖苷水合物 修改号码:6

模块 9. 理化特性
[水] 溶于
[其他溶剂] 无资料

模块 10. 稳定性和反应性
化学稳定性: 一般情况下稳定。
危险反应的可能性: 未报道特殊反应性。
须避免接触的物质 氧化剂
危险的分解产物: 一氧化碳, 二氧化碳

模块 11. 毒理学信息
急性毒性: 无资料
对皮肤腐蚀或刺激: 无资料
对眼睛严重损害或刺激: 无资料
生殖细胞变异原性: 无资料
致癌性:
IARC = 无资料
NTP = 无资料
生殖毒性: 无资料

模块 12. 生态学信息
生态毒性:
鱼类: 无资料
甲壳类: 无资料
藻类: 无资料
残留性 / 降解性: 无资料
潜在生物累积 (BCF): 无资料
土壤中移动性
log水分配系数: 无资料
土壤吸收系数 (Koc): 无资料
亨利定律 无资料
constant(PaM3/mol):

模块 13. 废弃处置
如果可能,回收处理。请咨询当地管理部门。建议在可燃溶剂中溶解混合,在装有后燃和洗涤装置的化学焚烧炉中
焚烧。废弃处置时请遵守国家、地区和当地的所有法规。

模块 14. 运输信息
联合国分类: 与联合国分类标准不一致
UN编号: 未列明

模块 15. 法规信息
《危险化学品安全管理条例》(2002年1月26日国务院发布,2011年2月16日修订): 针对危险化学品的安全使用、
生产、储存、运输、装卸等方面均作了相应的规定。
肌醇半乳糖苷水合物 修改号码:6


模块16 - 其他信息
N/A

制备方法与用途

半乳糖醇是一种生物化学试剂,可以用于生物材料或有机化合物的相关研究,在生命科学领域具有应用价值。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    α-D-galactosyl-(1→3)-1D-myo-inositol硫酸二甲酯 生成 O-Nonamethyl-galactinol
    参考文献:
    名称:
    On the Structure of Galactinol
    摘要:
    DOI:
    10.1021/ja01114a034
  • 作为产物:
    描述:
    蔗糖 在 galactinol synthase 、 sucrose synthase 、 UDP-Gal 4-epimerase 、 1,4-二巯基-2,3-丁二醇 作用下, 以 various solvent(s) 为溶剂, 反应 4.0h, 生成 α-D-galactosyl-(1→3)-1D-myo-inositol
    参考文献:
    名称:
    Production of Galactinol from Sucrose by Plant Enzymes
    摘要:
    半乳糖醇(Galactinol,1-O-(α-D-半乳糖吡喃糖基)-肌醇)是以蔗糖为起始材料生产的。使用从甘薯根部分纯化的蔗糖合成酶,能够将蔗糖和UDP转化为UDP-Glc。然后,使用来自商业来源的酵母UDP-Gal 4-表异构酶将UDP-Glc转化为UDP-Gal。最后,通过从黄瓜叶子中部分纯化的半乳糖醇合成酶将UDP-Gal和肌醇转化为半乳糖醇。通过高效液相色谱(HPLC)的保留时间、α-半乳糖苷酶消化和核磁共振(NMR)光谱分析确认该产品为半乳糖醇。
    DOI:
    10.1271/bbb.67.1465
点击查看最新优质反应信息

文献信息

  • Syntheses of Penta-<b><i>O</i></b>-benzyl-<b><i>myo</i></b>-inositols,<b><i>O</i></b>-<b><i>β</i></b>-<b>L</b>-Arabinosyl-(1 → 2)-<b><i>sn</i></b>-<b><i>myo</i></b>-inositol,<b><i>O</i></b>-<b><i>α</i></b>-<b>D</b>-Galactosyl-(1 → 3)-<b><i>sn</i></b>-<b><i>myo</i></b>-inositol, and<b><i>O</i></b>-<b><i>α</i></b>-<b>D</b>-Galactosyl-(1 → 6)-<b><i>O</i></b>-<b><i>α</i></b>-<b>D</b>-galactosyl-(1 → 3)-<b><i>sn</i></b>-<b><i>myo</i></b>-inositol
    作者:Shinkiti Koto、Motoko Hirooka、Toyosaku Yoshida、Kazuhiro Takenaka、Chizuru Asai、Toshiki Nagamitsu、Hiroaki Sakuma、Michiyo Sakurai、Shinichi Masuzawa、Mitsuo Komiya、Tadaaki Sato、Shonosuke Zen、Kazuo Yago、Fumiya Tomonaga
    DOI:10.1246/bcsj.73.2521
    日期:2000.11
    Two-step conversions of myo-inositol into (±)-2,3,4,5,6- and 1,3,4,5,6-penta-O-benzyl-myo-inositols are described. Starting from these monohydroxy derivatives of myo-inositol, O-β-L-arabinopyranosyl-(1 → 2)-sn-myo-inositol from Japanese green tea [SENCHA], Camellia sinensis, and O-α-D-galactopyranosyl-(1 → 3)-sn-myo-inositol (galactinol) as well as its homolog, O-α-D-galactopyranosyl-(1 → 6II)-galactinol, were synthesized by way of the in situ activating glycosylation procedure.
    本文描述了肌醇向(±)-2,3,4,5,6-和1,3,4,5,6-五-O-苄基-肌醇的两步转化过程。从这些单羟基衍生的肌醇出发,通过原位活化糖基化程序合成了来自日本绿茶(煎茶,山茶属)的O-β-L-阿拉伯呋喃糖基-(1→2)-sn-肌醇和O-α-D-半乳吡喃糖基-(1→3)-sn-肌醇(半乳糖醇)及其同系物,O-α-D-半乳吡喃糖基-(1→6II)-半乳糖醇。
  • Chain Elongation of Raffinose in Pea Seeds
    作者:Thomas Peterbauer、Jan Mucha、Lukas Mach、Andreas Richter
    DOI:10.1074/jbc.m109734200
    日期:2002.1
    Raffinose oligosaccharides are major soluble carbohydrates in seeds and other tissues of plants. Their biosynthesis proceeds by stepwise addition of galactose units to sucrose, which are provided by the unusual donor galactinol (O-alpha-D-galactopyranosyl-(1-->1)-L-myo-inositol). Chain elongation may also proceed by transfer of galactose units between raffinose oligosaccharides. We here report on the purification, characterization, and heterologous expression of a multifunctional stachyose synthase (EC 2.4.1.67) from developing pea (Pisum sativum L.) seeds. The protein, a member of family 36 of glycoside hydrolases, catalyzes the synthesis of stachyose, the tetrasaccharide of the raffinose series, by galactosyl transfer from galactinol to raffinose. It also mediates the synthesis of the pentasaccharide verbascose by galactosyl transfer from galactinol to stachyose as well as by self-transfer of the terminal galactose residue from one stachyose molecule to another. These activities show optima at pH 7.0. The enzyme also catalyzes hydrolysis of the terminal galactose residue of its substrates, but is unable to initiate the synthesis of raffinose oligosaccharides by galactosyl transfer from galactinol to sucrose. A minimum reaction mechanism which accounts for the broad substrate specificity and the steady-state kinetic properties of the protein is presented.
  • Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: the roles of two distinct galactinol synthases
    作者:Norbert Sprenger、Felix Keller
    DOI:10.1046/j.1365-313x.2000.00671.x
    日期:2000.2
    SummaryRaffinose family oligosaccharides (RFOs) are important phloem transport and storage carbohydrates for many plants. Ajuga reptans, a frost‐hardy evergreen labiate, ideally combines these two physiological roles and served as our model plant to study the regulation and importance of RFO metabolism. Galactinol is the galactosyl donor for the synthesis of raffinose (RFO‐trisaccharide) and stachyose (RFO‐tetrasaccharide), and its synthesis by galactinol synthase (GolS) is the first committed step of the RFO biosynthetic pathway. Two cDNAs encoding two distinct GolS were isolated from A. reptans source and sink leaves, designated GolS‐1 and GolS‐2, respectively. Warm‐ and cold‐grown sink and source leaves were compared, revealing both isoforms to be cold‐inducible and GolS‐1 to be source leaf‐specific; GolS‐1 expression correlated positively with GolS activity. Conversely, GolS‐2 expression was comparatively much lower and its contribution to the total extractable GolS activity is most probably only minor. These observations, together with results from phloem exudation and leaf shading experiments suggest that GolS‐1 is mainly involved in the synthesis of storage RFOs and GolS‐2 in the synthesis of transport RFOs. Furthermore, in situ hybridization studies showed GolS‐1 to be primarily expressed in the mesophyll, the site of RFO storage, and GolS‐2 in the phloem‐associated intermediary cells known for their role in RFO phloem loading. A model depicting the spatial compartmentation of the two GolS isoforms is proposed.
  • Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana
    作者:Teruaki Taji、Chieko Ohsumi、Satoshi Iuchi、Motoaki Seki、Mie Kasuga、Masatomo Kobayashi、Kazuko Yamaguchi-Shinozaki、Kazuo Shinozaki
    DOI:10.1046/j.0960-7412.2001.01227.x
    日期:2002.2
    SummaryRaffinose family oligosaccharides (RFO) accumulating during seed development are thought to play a role in the desiccation tolerance of seeds. However, the functions of RFO in desiccation tolerance have not been elucidated. Here we examine the functions of RFO in Arabidopsis thaliana plants under drought‐ and cold‐stress conditions, based on the analyses of function and expression of genes involved in RFO biosynthesis. Sugar analysis showed that drought‐, high salinity‐ and cold‐treated Arabidopsis plants accumulate a large amount of raffinose and galactinol, but not stachyose. Raffinose and galactinol were not detected in unstressed plants. This suggests that raffinose and galactinol are involved in tolerance to drought, high salinity and cold stresses. Galactinol synthase (GolS) catalyses the first step in the biosynthesis of RFO from UDP‐galactose. We identified three stress‐responsive GolS genes (AtGolS1, 2 and 3) among seven Arabidopsis GolS genes. AtGolS1 and 2 were induced by drought and high‐salinity stresses, but not by cold stress. By contrast, AtGolS3 was induced by cold stress but not by drought or salt stress. All the GST fusion proteins of GST‐AtGolS1, 2 and 3 expressed in Escherichia coli had galactinol synthase activities. Overexpression of AtGolS2 in transgenic Arabidopsis caused an increase in endogenous galactinol and raffinose, and showed reduced transpiration from leaves to improve drought tolerance. These results show that stress‐inducible galactinol synthase plays a key role in the accumulation of galactinol and raffinose under abiotic stress conditions, and that galactinol and raffinose may function as osmoprotectants in drought‐stress tolerance of plants.
  • Characterization of raffinose synthase from rice (Oryza sativa L. var. Nipponbare)
    作者:Suhong Li、Tuoping Li、Wook-Dong Kim、Motomitsu Kitaoka、Shigeki Yoshida、Mitsutoshi Nakajima、Hideyuki Kobayashi
    DOI:10.1007/s10529-006-9268-3
    日期:2007.3.6
    The putative raffinose synthase gene from rice was cloned and expressed in Escherichia coli. The enzyme displayed an optimum activity at 45 degrees C and pH 7.0, and a sulfhydryl group was required for its activity. The enzyme was specific for galactinol and p-nitrophenyl-alpha-D-galactoside as galactosyl donors, and sucrose, lactose, 4-beta-galactobiose, N-acetyl-D-lactosamine, trehalose and lacto-N-biose were recognized as galactosyl acceptors.
查看更多