Glycodiversification for the Optimization of the Kanamycin Class Aminoglycosides
摘要:
In an effort to optimize the antibacterial activity of kanamycin class aminoglycoside antibiotics, we have accomplished the synthesis and antibacterial assay of new kanamycin B analogues. A rationale-based glycodiversification strategy was employed. The activity of the lead is comparable to that of commercially available kanamycin. These new members, however, were found to be inactive against aminoglycoside resistant bacteria. Molecular modeling was used to provide the explanation. Thus, a new strategy for structural modifications of kanamycin class aminoglycosides is suggested.
Glycodiversification for the Optimization of the Kanamycin Class Aminoglycosides
摘要:
In an effort to optimize the antibacterial activity of kanamycin class aminoglycoside antibiotics, we have accomplished the synthesis and antibacterial assay of new kanamycin B analogues. A rationale-based glycodiversification strategy was employed. The activity of the lead is comparable to that of commercially available kanamycin. These new members, however, were found to be inactive against aminoglycoside resistant bacteria. Molecular modeling was used to provide the explanation. Thus, a new strategy for structural modifications of kanamycin class aminoglycosides is suggested.
Direct Synthesis of 2-Deoxy-β-Glycosides via Anomeric <i>O</i>-Alkylation with Secondary Electrophiles
作者:Danyang Zhu、Kedar N. Baryal、Surya Adhikari、Jianglong Zhu
DOI:10.1021/ja4116956
日期:2014.2.26
An approach for direct synthesis of biologically significant 2-deoxy-beta-glycosides has been developed via O-alkylation of a variety of 2-deoxy-sugar-derived anomeric alkoxides using challenging secondary triflates as electrophiles. It was found a free hydroxyl group at C3 of the 2-deoxy-sugar-derived lactols is required in order to achieve synthetically efficient yields. This method has also been applied to the convergent synthesis of a 2-deoxy-beta-tetrasaccharide.
Glycodiversification for the Optimization of the Kanamycin Class Aminoglycosides
作者:Jinhua Wang、Jie Li、Hsiao-Nung Chen、Huiwen Chang、Christabel Tomla Tanifum、Hsiu-Hsiang Liu、Przemyslaw G. Czyryca、Cheng-Wei Tom Chang
DOI:10.1021/jm050368c
日期:2005.10.1
In an effort to optimize the antibacterial activity of kanamycin class aminoglycoside antibiotics, we have accomplished the synthesis and antibacterial assay of new kanamycin B analogues. A rationale-based glycodiversification strategy was employed. The activity of the lead is comparable to that of commercially available kanamycin. These new members, however, were found to be inactive against aminoglycoside resistant bacteria. Molecular modeling was used to provide the explanation. Thus, a new strategy for structural modifications of kanamycin class aminoglycosides is suggested.