摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(3R)-(+)-4,4-dimethyl-1-penten-3-ol | 24580-44-7

中文名称
——
中文别名
——
英文名称
(3R)-(+)-4,4-dimethyl-1-penten-3-ol
英文别名
(R)-4,4-dimethylpent-1-en-3-ol;(R)-4,4-dimethyl-pent-1-en-3-ol;4,4-Dimethylpent-1-en-3-ol;1-Penten-3-ol, 4,4-dimethyl-, (R)-;(3R)-4,4-dimethylpent-1-en-3-ol
(3R)-(+)-4,4-dimethyl-1-penten-3-ol化学式
CAS
24580-44-7
化学式
C7H14O
mdl
——
分子量
114.188
InChiKey
CXZYULDCQRMQIQ-ZCFIWIBFSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    131 °C
  • 密度:
    0.832±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.9
  • 重原子数:
    8
  • 可旋转键数:
    2
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.71
  • 拓扑面积:
    20.2
  • 氢给体数:
    1
  • 氢受体数:
    1

SDS

SDS:34080af9f7293fbf773d62e65291194c
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    Synthesis of the antiepileptic (R)-Stiripentol by a combination of lipase catalyzed resolution and alkene metathesis
    摘要:
    The enantiopure (ee >99%) antiepileptic (R)-(+)-Stiripentol has been stereoselectively synthesized via cross metathesis of 5-vinylbenzo[d][1,3]dioxole 1 and (R)-(+)-4,4-dimethylpent-1-en-3-ol (R)-(+)-2. A novel one-pot two-step pathway for the synthesis of 5-vinylbenzo[d][1,3]dioxole 1 starting from 3,4-dihydroxycinnamic acid has been introduced. A lipase catalyzed kinetic resolution access to enantiopure (R)-(+)-4,4-dimethylpent-1-en-3-ol (R)-(+)-2 (ee >99%) has also been developed. (C) 2013 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.tetasy.2013.02.006
  • 作为产物:
    描述:
    ethyl (E)-4,4-dimethyl-2-pentenoatetitanium(IV) isopropylate叔丁基过氧化氢4-二甲氨基吡啶sodium hydroxide碲化氢L-(+)-酒石酸二乙酯 、 4 A molecular sieve 、 sodium formaldehyde sulfoxylate 、 二异丁基氢化铝三乙胺 作用下, 以 四氢呋喃二氯甲烷 为溶剂, 反应 12.0h, 生成 (3R)-(+)-4,4-dimethyl-1-penten-3-ol
    参考文献:
    名称:
    A tellurium transposition route to allylic alcohols: overcoming some limitations of the Sharpless-Katsuki asymmetric epoxidation
    摘要:
    Good yields of enantiomeric allylic alcohols can be obtained in high enantiomeric excess (ee) by combining the Sharpless-Katsuki asymmetric epoxidation process (SAE) with tellurium chemistry. The advantages of the tellurium process are as follows: (1) the 50% yield limitation on the allylic alcohol in the Sharpless kinetic resolution (SKR) can be overcome; (2) allylic tertiary alcohols which are unsatisfactory substrates in the SKR can be obtained in high optical purity; (3) optically active secondary allylic alcohols with tertiary alkyl substituents (e.g. tert-butyl) at C-1 can be obtained in high ee; (4) optically active sterically congested cis secondary alcohols can be obtained in high ee; and (5) the nuisance of the slow SAE of some vinyl carbinols can be avoided. The key step in the reaction sequence is either a stereospecific 1,3-trans position of double bond and alcohol functionalities or an inversion of the alcohol configuration with concomitant deoxygenation of the epoxide function in epoxy alcohols. Trans secondary allylic alcohols can be converted to cis secondary allylic alcohols by way of erythro epoxy alcohols (glycidols); threo glycidyl derivatives are converted to trans secondary allylic alcohols. These transformations are accomplished by the action of telluride ion, generated in situ from the element, on a glycidyl sulfonate ester. Reduction of elemental Te is conveniently done with rongalite (HOCH2SO2Na) in an aqueous medium. This method is satisfactory when Te2- is required to attack a primary carbon site of a glycidyl sulfonate. In cases where Te2- is required to attack a secondary carbon site, reduction of the tellurium must be done with NaBH4 or LiEt3BH. Elemental tellurium is precipitated during the course of the reactions and can be recovered and reused.
    DOI:
    10.1021/jo00055a029
点击查看最新优质反应信息

文献信息

  • Stereoselective nitrile oxide cycloadditions to chiral allyl ethers and alcohols. The inside alkoxy effect
    作者:K. N. Houk、Susan R. Moses、Yun Dong Wu、Nelson G. Rondan、Volker Jager、R. Schohe、Frank R. Fronczek
    DOI:10.1021/ja00325a040
    日期:1984.6
  • Weidmann,R. et al., Bulletin de la Societe Chimique de France, 1976, p. 645 - 648
    作者:Weidmann,R. et al.
    DOI:——
    日期:——
  • Synthesis of the antiepileptic (R)-Stiripentol by a combination of lipase catalyzed resolution and alkene metathesis
    作者:Mohammed Farrag El-Behairy、Eirik Sundby
    DOI:10.1016/j.tetasy.2013.02.006
    日期:2013.3
    The enantiopure (ee >99%) antiepileptic (R)-(+)-Stiripentol has been stereoselectively synthesized via cross metathesis of 5-vinylbenzo[d][1,3]dioxole 1 and (R)-(+)-4,4-dimethylpent-1-en-3-ol (R)-(+)-2. A novel one-pot two-step pathway for the synthesis of 5-vinylbenzo[d][1,3]dioxole 1 starting from 3,4-dihydroxycinnamic acid has been introduced. A lipase catalyzed kinetic resolution access to enantiopure (R)-(+)-4,4-dimethylpent-1-en-3-ol (R)-(+)-2 (ee >99%) has also been developed. (C) 2013 Elsevier Ltd. All rights reserved.
  • A tellurium transposition route to allylic alcohols: overcoming some limitations of the Sharpless-Katsuki asymmetric epoxidation
    作者:Donald C. Dittmer、Robert P. Discordia、Yanzhi Zhang、Christopher K. Murphy、Archana Kumar、Aurora S. Pepito、Yuesheng Wang
    DOI:10.1021/jo00055a029
    日期:1993.1
    Good yields of enantiomeric allylic alcohols can be obtained in high enantiomeric excess (ee) by combining the Sharpless-Katsuki asymmetric epoxidation process (SAE) with tellurium chemistry. The advantages of the tellurium process are as follows: (1) the 50% yield limitation on the allylic alcohol in the Sharpless kinetic resolution (SKR) can be overcome; (2) allylic tertiary alcohols which are unsatisfactory substrates in the SKR can be obtained in high optical purity; (3) optically active secondary allylic alcohols with tertiary alkyl substituents (e.g. tert-butyl) at C-1 can be obtained in high ee; (4) optically active sterically congested cis secondary alcohols can be obtained in high ee; and (5) the nuisance of the slow SAE of some vinyl carbinols can be avoided. The key step in the reaction sequence is either a stereospecific 1,3-trans position of double bond and alcohol functionalities or an inversion of the alcohol configuration with concomitant deoxygenation of the epoxide function in epoxy alcohols. Trans secondary allylic alcohols can be converted to cis secondary allylic alcohols by way of erythro epoxy alcohols (glycidols); threo glycidyl derivatives are converted to trans secondary allylic alcohols. These transformations are accomplished by the action of telluride ion, generated in situ from the element, on a glycidyl sulfonate ester. Reduction of elemental Te is conveniently done with rongalite (HOCH2SO2Na) in an aqueous medium. This method is satisfactory when Te2- is required to attack a primary carbon site of a glycidyl sulfonate. In cases where Te2- is required to attack a secondary carbon site, reduction of the tellurium must be done with NaBH4 or LiEt3BH. Elemental tellurium is precipitated during the course of the reactions and can be recovered and reused.
查看更多