摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-氧代-[3-13C]丙酸 | 74787-41-0

中文名称
2-氧代-[3-13C]丙酸
中文别名
丙酮酸-3-<sup>13</sup>C
英文名称
2-oxo-[3-13C]propionic acid
英文别名
Pyruvic-3-13C acid, 99 atom % 13C, 95% (CP);2-oxo(313C)propanoic acid
2-氧代-[3-13C]丙酸化学式
CAS
74787-41-0
化学式
C3H4O3
mdl
——
分子量
89.052
InChiKey
LCTONWCANYUPML-OUBTZVSYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.3
  • 重原子数:
    6
  • 可旋转键数:
    1
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.33
  • 拓扑面积:
    54.4
  • 氢给体数:
    1
  • 氢受体数:
    3

反应信息

  • 作为反应物:
    描述:
    2-氧代-[3-13C]丙酸氢气碳酸氢铵还原型辅酶Ⅰ 作用下, 以> 98 %的产率得到L-丙氨酸-3-13C
    参考文献:
    名称:
    生物催化还原胺化作为获得同位素标记氨基酸的途径,适用于通过 NMR 分析大蛋白质
    摘要:
    我们展示了一种原子效率高且易于使用的 H 2驱动生物催化平台,用于将2 个H 原子对映选择性掺入氨基酸中。通过将生物催化氘化催化剂与能够还原胺化的氨基酸脱氢酶相结合,我们从低成本同位素前体(例如2 H 2 O 和15 NH 4 + )合成了多重同位素标记的氨基酸库。所选择的方法避免使用预先标记的2 H-还原剂,因此大大简化了产品清理。值得注意的是,该策略使得2 H、15 N 和不对称中心能够在良性条件下以完全选择性的一步引入到分子位点,并且具有接近 100% 的原子经济性。该方法有利于半克规模的氨基酸同位素体的制备。这些氨基酸在分析生命科学中具有广泛的适用性,特别是蛋白质的核磁共振光谱分析。为了证明该方法对蛋白质 NMR 化学家工作流程的好处,我们制备了L -[α- 2 H, 15 N, β- 13 C]-丙氨酸并将其集成到大型 (>400 kDa) 热休克中蛋白质寡聚物,随后可通过甲基-TROSY
    DOI:
    10.1039/d3sc01718d
  • 作为产物:
    参考文献:
    名称:
    日粮糖6磺酸葡萄糖(sulfoquinovose)对碳水化合物代谢的代谢和生化影响
    摘要:
    主要碳水化合物途径(糖酵解,磷酸戊糖和己糖胺生物合成途径)活性的增加是诸如癌症等新陈代谢疾病的标志之一。磺基喹喔基二酰基甘油脂是人类饮食中发现的一种磺基糖脂,具有抗癌活性,而其碳水化合物部分(葡萄糖6磺酸盐或磺基喹诺夫糖)被去除时就不存在。这项工作使用细菌系统通过三个主要的碳水化合物加工途径进一步了解了这种糖的代谢,以及这如何影响其生物活性。使用(13)C NMR光谱和酶分析,我们表明6-磺酸葡萄糖不能进入戊糖磷酸途径,因此减少了戊糖和核苷酸的生物合成。在糖酵解过程中,葡萄糖6磺酸盐只能为每个单糖分子提供一个丙酮酸,与6-磷酸葡萄糖相比,该途径的流量减少了一半。葡萄糖6-磺酸盐可通过产生葡萄糖胺6-磺酸盐进入己糖胺生物合成途径,后者是一种竞争性抑制己糖胺产生的抗菌剂。所有这些与碳水化合物途径的相互作用都可能有助于解释观察到的6-磺酸葡萄糖在体外具有的抗癌活性。这增加了我们对富含6-磺酸葡萄
    DOI:
    10.1016/j.carres.2012.09.014
点击查看最新优质反应信息

文献信息

  • The metabolic and biochemical impact of glucose 6-sulfonate (sulfoquinovose), a dietary sugar, on carbohydrate metabolism
    作者:Juliana L. Sacoman、Lauren N. Badish、Thomas D. Sharkey、Rawle I. Hollingsworth
    DOI:10.1016/j.carres.2012.09.014
    日期:2012.11
    the metabolism of this sugar through three main carbohydrate processing pathways and how this could influence its biological activity. Using (13)C NMR spectroscopy and enzyme assays, we showed that glucose 6-sulfonate cannot enter the pentose phosphate pathway, hence decreasing pentose and nucleotide biosyntheses. In glycolysis, glucose 6-sulfonate only provides one pyruvate per monosaccharide molecule
    主要碳水化合物途径(糖酵解,磷酸戊糖和己糖胺生物合成途径)活性的增加是诸如癌症等新陈代谢疾病的标志之一。磺基喹喔基二酰基甘油脂是人类饮食中发现的一种磺基糖脂,具有抗癌活性,而其碳水化合物部分(葡萄糖6磺酸盐或磺基喹诺夫糖)被去除时就不存在。这项工作使用细菌系统通过三个主要的碳水化合物加工途径进一步了解了这种糖的代谢,以及这如何影响其生物活性。使用(13)C NMR光谱和酶分析,我们表明6-磺酸葡萄糖不能进入戊糖磷酸途径,因此减少了戊糖和核苷酸的生物合成。在糖酵解过程中,葡萄糖6磺酸盐只能为每个单糖分子提供一个丙酮酸,与6-磷酸葡萄糖相比,该途径的流量减少了一半。葡萄糖6-磺酸盐可通过产生葡萄糖胺6-磺酸盐进入己糖胺生物合成途径,后者是一种竞争性抑制己糖胺产生的抗菌剂。所有这些与碳水化合物途径的相互作用都可能有助于解释观察到的6-磺酸葡萄糖在体外具有的抗癌活性。这增加了我们对富含6-磺酸葡萄
  • Biocatalytic reductive amination as a route to isotopically labelled amino acids suitable for analysis of large proteins by NMR
    作者:Jack S. Rowbotham、Jake H. Nicholson、Miguel A. Ramirez、Kouji Urata、Peter M. T. Todd、Gogulan Karunanithy、Lars Lauterbach、Holly A. Reeve、Andrew J. Baldwin、Kylie A. Vincent
    DOI:10.1039/d3sc01718d
    日期:——
    and easy to use H2-driven biocatalytic platform for the enantioselective incorporation of 2H-atoms into amino acids. By combining the biocatalytic deuteration catalyst with amino acid dehydrogenase enzymes capable of reductive amination, we synthesised a library of multiply isotopically labelled amino acids from low-cost isotopic precursors, such as 2H2O and 15NH4+. The chosen approach avoids the use
    我们展示了一种原子效率高且易于使用的 H 2驱动生物催化平台,用于将2 个H 原子对映选择性掺入氨基酸中。通过将生物催化氘化催化剂与能够还原胺化的氨基酸脱氢酶相结合,我们从低成本同位素前体(例如2 H 2 O 和15 NH 4 + )合成了多重同位素标记的氨基酸库。所选择的方法避免使用预先标记的2 H-还原剂,因此大大简化了产品清理。值得注意的是,该策略使得2 H、15 N 和不对称中心能够在良性条件下以完全选择性的一步引入到分子位点,并且具有接近 100% 的原子经济性。该方法有利于半克规模的氨基酸同位素体的制备。这些氨基酸在分析生命科学中具有广泛的适用性,特别是蛋白质的核磁共振光谱分析。为了证明该方法对蛋白质 NMR 化学家工作流程的好处,我们制备了L -[α- 2 H, 15 N, β- 13 C]-丙氨酸并将其集成到大型 (>400 kDa) 热休克中蛋白质寡聚物,随后可通过甲基-TROSY
查看更多

同类化合物

马来酰基乙酸 顺-3-己烯-1-丙酮酸 青霉酸 钠氟草酰乙酸二乙酯 醚化物 酮霉素 辛酸,2,4-二羰基-,乙基酯 草酸乙酯钠盐 草酰乙酸二乙酯钠盐 草酰乙酸二乙酯 草酰乙酸 草酰丙酸二乙酯 苯乙酰丙二酸二乙酯 苯丁酸,b-羰基-,2-丙烯基酯 聚氧化乙烯 羟基-(3-羟基-2,3-二氧代丙基)-氧代鏻 磷酸二氢2-{(E)-2-[4-(二乙胺基)-2-甲基苯基]乙烯基}-1,3,3-三甲基-3H-吲哚正离子 碘化镝 硬脂酰乙酸乙酯 甲氧基乙酸乙酯 甲氧基乙酰乙酸酯 甲基氧代琥珀酸二甲盐 甲基4-环己基-3-氧代丁酸酯 甲基4-氯-3-氧代戊酸酯 甲基4-氧代癸酸酯 甲基4-氧代月桂酸酯 甲基4-(甲氧基-甲基磷酰)-2,2,4-三甲基-3-氧代戊酸酯 甲基3-羰基-2-丙酰戊酸酯 甲基3-氧代十五烷酸酯 甲基2-氟-3-氧戊酯 甲基2-氟-3-氧代己酸酯 甲基2-氟-3-氧代丁酸酯 甲基2-乙酰基环丙烷羧酸酯 甲基2-乙酰基-4-甲基-4-戊烯酸酯 甲基2-乙酰基-2-丙-2-烯基戊-4-烯酸酯 甲基2,5-二氟-3-氧代戊酸酯 甲基2,4-二氟-3-氧代戊酸酯 甲基2,4-二氟-3-氧代丁酸酯 甲基1-异丁酰基环戊烷羧酸酯 甲基1-乙酰基环戊烷羧酸酯 甲基1-乙酰基环丙烷羧酸酯 甲基(2Z,4E,6E)-2-乙酰基-7-(二甲基氨基)-2,4,6-庚三烯酸酯 甲基(2S)-2-甲基-4-氧代戊酸酯 甲基(1R,2R)-2-乙酰基环丙烷羧酸酯 瑞舒伐他汀杂质 瑞舒伐他汀杂质 环氧乙烷基甲基乙酰乙酸酯 环戊戊烯酸,Β-氧代,乙酯 环戊基(氧代)乙酸乙酯 环戊[b]吡咯-6-腈,八氢-2-氧-,[3aS-(3aalpha,6alpha,6aalpha)]-(9CI)