摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,6-diiodo-hex-3-yne | 936244-82-5

中文名称
——
中文别名
——
英文名称
1,6-diiodo-hex-3-yne
英文别名
1,6-diiodohex-3-yne
1,6-diiodo-hex-3-yne化学式
CAS
936244-82-5
化学式
C6H8I2
mdl
——
分子量
333.939
InChiKey
DUEBZAQJEJXVMS-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.8
  • 重原子数:
    8
  • 可旋转键数:
    2
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    1,6-diiodo-hex-3-yne双(三甲基硅烷基)氨基钾二异丁基氢化铝 作用下, 以 四氢呋喃乙醚正己烷乙腈 为溶剂, 反应 7.0h, 生成 (3Z,9Z)-dodeca-1,3,9,11-tetraen-6-yne
    参考文献:
    名称:
    不对称 (1Z,4Z,7Z)-同共轭三烯的高效一锅双维蒂希方法
    摘要:
    我们描述了一种使用对称 (Z)-hex-3-ene-1,6-bis(triphenylphosphonium iodide) (2) 作为关键试剂的针对不对称取代的跳过三烯的新型单锅双 Wittig 方法。相应的双(叶立德) 3 与依次添加的醛的双链烯基化以良好的产率得到 (Z)-1,4,7-同共轭三烯。双(叶立德) 3 的不对称化是可行的,因为与第一次烯化产生的单叶立德相比,它显示出增强的反应性。双(叶立德) 3 统计偶联的对称产物可以通过中间铝酸盐复合物的原位热分解缓慢释放第一个醛组分来显着抑制,中间铝酸盐复合物是通过用 DIBAL-H 还原甲酯生成的。该新策略已成功应用于功能化和同位素标记的多不饱和脂肪酸的一锅法合成以及测地虫信息素 (3Z,6Z,9Z)-nonadeca-1,3,6,9-tetraene 的合成(6a)。还发现不对称化策略适用于从 1,3-丙基双(三苯基溴化鏻)合成同共轭二烯。
    DOI:
    10.1002/(sici)1099-0690(200005)2000:9<1821::aid-ejoc1821>3.0.co;2-u
  • 作为产物:
    描述:
    hex-3-yne-1,6-diyl bis(4-methylbenzenesulfonate) 在 sodium iodide 作用下, 以 丙酮 为溶剂, 反应 10.0h, 生成 1,6-diiodo-hex-3-yne
    参考文献:
    名称:
    不对称 (1Z,4Z,7Z)-同共轭三烯的高效一锅双维蒂希方法
    摘要:
    我们描述了一种使用对称 (Z)-hex-3-ene-1,6-bis(triphenylphosphonium iodide) (2) 作为关键试剂的针对不对称取代的跳过三烯的新型单锅双 Wittig 方法。相应的双(叶立德) 3 与依次添加的醛的双链烯基化以良好的产率得到 (Z)-1,4,7-同共轭三烯。双(叶立德) 3 的不对称化是可行的,因为与第一次烯化产生的单叶立德相比,它显示出增强的反应性。双(叶立德) 3 统计偶联的对称产物可以通过中间铝酸盐复合物的原位热分解缓慢释放第一个醛组分来显着抑制,中间铝酸盐复合物是通过用 DIBAL-H 还原甲酯生成的。该新策略已成功应用于功能化和同位素标记的多不饱和脂肪酸的一锅法合成以及测地虫信息素 (3Z,6Z,9Z)-nonadeca-1,3,6,9-tetraene 的合成(6a)。还发现不对称化策略适用于从 1,3-丙基双(三苯基溴化鏻)合成同共轭二烯。
    DOI:
    10.1002/(sici)1099-0690(200005)2000:9<1821::aid-ejoc1821>3.0.co;2-u
点击查看最新优质反应信息

文献信息

  • Synthetic, Mechanistic, and Computational Investigations of Nitrile-Alkyne Cross-Metathesis
    作者:Andrea M. Geyer、Eric S. Wiedner、J. Brannon Gary、Robyn L. Gdula、Nicola C. Kuhlmann、Marc J. A. Johnson、Barry D. Dunietz、Jeff W. Kampf
    DOI:10.1021/ja800020w
    日期:2008.7.1
    The terminal nitride complexes NW(OC(CF3)(2)Me)(3)(DME) (1-DME), [Li(DME)(2)][NW(OC(CF3)(2)Me)(4)] (2), and [NW(OCMe2CF3)(3)](3) (3) were prepared in good yield by salt elimination from [NWCl3](4). X-ray structures revealed that 1-DME and 2 are monomeric in the solid state. All three complexes catalyze the cross-metathesis of 3-hexyne with assorted nitriles to form propionitrile and the corresponding alkyne. Propylidyne and substituted benzylidyne complexes RCW(OC(CF3)(2)Me)(3) were isolated in good yield upon reaction of 1-DME with 3-hexyne or 1-aryl-1-butyne. The corresponding reactions failed for 3. Instead, EtCW(OC(CF3)Me-2)(3) (6) was prepared via the reaction of W-2(OC(CF3)Me-2)(6) with 3-hexyne at 95 degrees C. Benzylidyne complexes of the form ArCW(OC(CF3)Me-2)(3) (Ar = aryl) then were prepared by treatment of 6 with the appropriate symmetrical alkyne ArCCAr. Three coupled cycles for the interconversion of 1-DME with the corresponding propylidyne and benzylidyne complexes via [2 + 2] cycloaddition-cycloreversion were examined for reversibility. Stoichiometric reactions revealed that both nitrile-alkyne cross-metathesis (NACM) cycles as well as the alkyne cross-metathesis (ACM) cycle operated reversibly in this system. With catalyst 3, depending on the aryl group used, at least one step in one of the NACM cycles was irreversible. In general, catalyst 1-DME afforded more rapid reaction than did 3 under comparable conditions. However, 3 displayed a slightly improved tolerance of polar functional groups than did 1-DME. For both 11-DME and 3, ACM is more rapid than NACM under typical conditions. Alkyne polymerization (AP) is a competing reaction with both 1-DME and 3. It can be suppressed but not entirely eliminated via manipulation of the catalyst concentration. As AP selectively removes 3-hexyne from the system, tandem NACM-ACM-AP can be used to prepare symmetrically substituted alkynes with good selectivity, including an arylene-ethynylene macrocycle. Alternatively, unsymmetrical alkynes of the form EtCCR (R variable) can be prepared with good selectivity via the reaction of RCN with excess 3-hexyne under conditions that suppress AP. DFT calculations support a [2 + 2) cycloaddition-cycloreversion mechanism analogous to that of alkyne metathesis. The barrier to azametalacyciobutadiene ring formation/breakup is greater than that for the corresponding metalacyclobutadiene. Two distinct high-energy azametalacyclobutadiene intermediates were found. These adopted a distorted square pyramidal geometry with significant bond localization.
  • Catalytic Nitrile-Alkyne Cross-Metathesis
    作者:Andrea M. Geyer、Robyn L. Gdula、Eric S. Wiedner、Marc J. A. Johnson
    DOI:10.1021/ja0693439
    日期:2007.4.1
    The first catalytic cross-metathesis reaction of an alkyne with a nitrile is described. The nitride complex NW(OC(CF3)(2)CH3)(3)(DME) undergoes reversible triple-bond metathesis reactions with alkynes (RCCR; R = Et, 4-C6H4OMe), forming the alkylidyne complexes RCW(OC(CF3)(2)CH3)(3)(DME) (R = Et, 4-C6H4OMe) along with the corresponding nitrile RCN. This has been exploited to effect catalytic cross-metathesis of nitriles with alkynes, in which the organic CR fragments of two nitriles are coupled to yield an alkyne. A simple "sacrificial" alkyne (3-hexyne) acts as the N-atom acceptor, forming two equivalents of nitrile byproduct (propionitrile).
查看更多