[EN] HETEROAROMATIC AND HETEROBICYCLIC AROMATIC DERIVATIVES FOR THE TREATMENT OF FERROPTOSIS-RELATED DISORDERS<br/>[FR] DÉRIVÉS AROMATIQUES HÉTÉROBICYCLIQUES ET HÉTÉROAROMATIQUES POUR LE TRAITEMENT DE TROUBLES LIÉS À LA FERROPTOSE
申请人:COLLABORATIVE MEDICINAL DEV LLC
公开号:WO2020185738A1
公开(公告)日:2020-09-17
The present application discloses heteroaromatic and heterobicyclic aromatic derivative compounds and compositions, and methods for treating ferroptosis-related disorders and diseases in patients using the compounds and compositions as disclosed herein.
Inhibition of the Cysteine Protease Human Cathepsin L by Triazine Nitriles: Amide⋅⋅⋅Heteroarene π-Stacking Interactions and Chalcogen Bonding in the S3 Pocket
We report an extensive “heteroarene scan” of triazinenitrile ligands of the cysteine protease human cathepsin L (hCatL) to investigate π‐stacking on the peptide amide bond Gly67–Gly68 at the entrance of the S3 pocket. This heteroarene⋅⋅⋅peptide bond stacking was supported by a co‐crystal structure of an imidazopyridine ligand with hCatL. Inhibitory constants (Ki) are strongly influenced by the diverse
我们报道了半胱氨酸蛋白酶人组织蛋白酶L(hCatL)的三嗪腈配体的广泛的“杂芳烃扫描”,以研究S3口袋入口处的肽酰胺键Gly67–Gly68上的π堆积。杂芳基·····肽键的堆叠由咪唑并吡啶配体与hCatL的共晶体结构支持。抑制常数(ķ我)受到杂环的多样性和与S3口袋局部环境的特定相互作用的强烈影响。结合亲和力变化三个数量级。与烃类似物相比,所有杂芳族配体均具有增强的结合力。从杂芳烃和肽键的局部偶极矩的方向预测的能量贡献无法得到证实。分子间的C-S⋅⋅⋅O= C相互作用(硫族元素键)与Asn66的主链C = O增强了苯并噻吩基(K i = 4 n m)和苯并噻唑基(K i = 17 n m)配体的结合。 S3口袋。还测试了配体的相关酶罗德沙星。
Reusable Co-nanoparticles for general and selective <i>N</i>-alkylation of amines and ammonia with alcohols
作者:Zhuang Ma、Bei Zhou、Xinmin Li、Ravishankar G. Kadam、Manoj B. Gawande、Martin Petr、Radek Zbořil、Matthias Beller、Rajenahally V. Jagadeesh
DOI:10.1039/d1sc05913k
日期:——
A general cobalt-catalyzed N-alkylation of amines with alcohols by borrowing hydrogen methodology to prepare different kinds of amines is reported. The optimal catalyst for this transformation is prepared by pyrolysis of a specific templated material, which is generated in situ by mixing cobalt salts, nitrogen ligands and colloidal silica, and subsequent removal of silica. Applying this novel Co-nanoparticle-based
A rare reductive coupling of nitro compounds with organohalides has been realized. The reaction is initiated by a partial reduction of the nitro group to a nitrenoid intermediate. Therefore, not only aromatic but also aliphatic nitro compounds are efficiently transformed into monoalkylated amines, with organohalides as the alkylating agent. Given the innate reactivity of the nitrenoid, a catalyst is
N‐alkyl hydroxylamines are effective reagents for the amination of organoboronic acids in the presence of trichloroacetonitrile. This amination reaction proceeds rapidly at roomtemperature and in the absence of added metal or base, it tolerates a remarkable range of functional groups, and it can be used in the late‐stage assembly of two complex units.