摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

laminaribiose

中文名称
——
中文别名
——
英文名称
laminaribiose
英文别名
laminarabiose;Glcβ(1→3)Glc;(3R,4S,5R,6R)-6-(hydroxymethyl)-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxane-2,3,5-triol
laminaribiose化学式
CAS
——
化学式
C12H22O11
mdl
——
分子量
342.3
InChiKey
QIGJYVCQYDKYDW-LCOYTZNXSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -4.2
  • 重原子数:
    23
  • 可旋转键数:
    4
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    190
  • 氢给体数:
    8
  • 氢受体数:
    11

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2

反应信息

  • 作为反应物:
    描述:
    laminaribiose 在 purified Trichoderma viride β-glucosidase 作用下, 反应 24.0h, 以15.3%的产率得到β-D-glucopyranosyl-(1-> 6)-β-D-glucopyranosyl-(1-> 3)-D-glucopyranose
    参考文献:
    名称:
    里氏木霉β-葡萄糖苷酶从β-葡萄糖酶产生的新三糖和四糖的区域选择性合成及其NMR谱的结构分析
    摘要:
    摘要从绿色木霉纤维素酶复合物中部分纯化了一种新的β-葡萄糖苷酶。该β-葡糖苷酶水解β-(1→2)-,β-(1→3)-,β-(1→4)-和β-(1→6)-连接的葡糖苷酶并催化纤维二糖的转糖基化反应。产生区域选择性的β-d -Glc-(1→6)-β-d-Glc-(1→4)-d -Glc(产率:18.8%)和β-d -Glc-(1→6)-β -d -Glc-(1→6)-β-d-Glc-(1→4)-d-Glc(3.7%)。此外,该酶将laminarabiose和龙胆二糖转化为β-d -Glc-(1→6)-β-d-Glc-(1→3)-d -Glc(15.3%)和β-d -Glc-(1→ 6)-β-d-Glc-(1→6)-d-Glc(20.2%)。产物的结构通过1 H和13 C NMR光谱确定。该酶显示的这种高区域选择性和立体选择性通常可用于寡糖合成。
    DOI:
    10.1016/s0008-6215(99)00166-4
  • 作为产物:
    描述:
    benzyl 3-O-α-D-glucopyranosyl-β-D-glucopyranoside 在 氢气 作用下, 以 乙醇 为溶剂, 反应 24.0h, 以86%的产率得到laminaribiose
    参考文献:
    名称:
    Synthesis of benzyl α- and β-sophorosides, and of benzyl α-laminarabioside
    摘要:
    DOI:
    10.1016/s0008-6215(00)84592-9
点击查看最新优质反应信息

文献信息

  • Direct Dehydrative Pyridylthio-Glycosidation of Unprotected Sugars in Aqueous Media Using 2-Chloro-1,3-dimethylimidazolinium Chloride as a Condensing Agent
    作者:Naoki Yoshida、Masato Noguchi、Tomonari Tanaka、Takeshi Matsumoto、Naoya Aida、Masaki Ishihara、Atsushi Kobayashi、Shin-ichiro Shoda
    DOI:10.1002/asia.201000896
    日期:2011.7.4
    enzyme inhibitors in sugar chemistry, have been synthesized directly from the corresponding unprotected sugars in good yields by using 2‐chloro‐1,3‐dimethylimidazolinium chloride (DMC) as dehydrative condensing agent. The reaction proceeds in aqueous media without using any protecting groups, affording 2‐pyridyl 1‐thioglycosides with β‐configuration selectively. According to the present method, not
    通过使用2-氯-1,3-二甲基咪唑啉鎓氯化物(DMC)作为脱水缩合剂,可以直接从相应的未保护糖以高收率直接合成各种2-吡啶基1-硫代糖苷,糖化学中的重要合成中间体和酶抑制剂。反应在水性介质中进行,无需使用任何保护基,选择性地提供具有β-构型的2-吡啶基1-硫代糖苷。根据本方法,不仅未保护的单糖,而且未保护的寡糖,例如纤维寡糖,壳寡糖,麦芽寡糖和氨基葡萄糖低聚物,都可以转化为相应的2-吡啶硫基衍生物,这将大大扩展芳基1-硫代糖苷在糖化学中的应用。
  • Molecular Characterization and Potential Synthetic Applications of GH1 β-Glucosidase from Higher Termite Microcerotermes annandalei
    作者:Siriphan Arthornthurasuk、Wantha Jenkhetkan、Eukote Suwan、Daranee Chokchaichamnankit、Chantragan Srisomsap、Pakorn Wattana-Amorn、Jisnuson Svasti、Prachumporn T. Kongsaeree
    DOI:10.1007/s12010-018-2781-8
    日期:2018.12
    A novel β-glucosidase from higher termite Microcerotermes annandalei (MaBG) was obtained via a screening method targeting β-glucosidases with increased activities in the presence of glucose. The purified natural MaBG showed a subunit molecular weight of 55 kDa and existed in a native form as a dimer without any glycosylation. Gene-specific primers designed from its partial amino acid sequences were used to amplify the corresponding 1,419-bp coding sequence of MaBG which encodes a 472-amino acid glycoside hydrolase family 1 (GH1) β-glucosidase. When expressed in Komagataella pastoris, the recombinant MaBG appeared as a ~ 55-kDa protein without glycosylation modifications. Kinetic parameters as well as the lack of secretion signal suggested that MaBG is an intracellular enzyme and not involved in cellulolysis. The hydrolytic activities of MaBG were enhanced in the presence of up to 3.5-4.5 M glucose, partly due to its strong transglucosylation activity, which suggests its applicability in biosynthetic processes. The potential synthetic activities of the recombinant MaBG were demonstrated in the synthesis of para-nitrophenyl-β-D-gentiobioside via transglucosylation and octyl glucoside via reverse hydrolysis. The information obtained from this study has broadened our insight into the functional characteristics of this variant of termite GH1 β-glucosidase and its applications in bioconversion and biotechnology.
    从高等白蚁Microcerotermes annandalei中获得了一种新型β-葡萄糖苷酶(MaBG),该酶在葡萄糖存在下活性增强。天然纯化的MaBG亚基分子量为55 kDa,以二聚体的形式存在,不含糖基化修饰。根据其部分氨基酸序列设计的基因特异性引物被用于扩增对应的1,419 bp编码序列,该序列编码472个氨基酸的糖苷水解酶家族1(GH1)β-葡萄糖苷酶。在Komagataella pastoris中表达时,重组MaBG以约55 kDa的蛋白质形式存在,不含糖基化修饰。动力学参数和缺乏分泌信号表明MaBG是一种胞内酶,不参与纤维素分解。在高达3.5-4.5 M葡萄糖的存在下,MaBG的水解活性增强,部分原因是其强烈的转葡萄糖基作用活性,这表明其在生物合成过程中的适用性。在通过转葡萄糖基作用合成对硝基苯基-β-D-龙胆二糖和对辛基葡萄糖苷通过反向水解合成过程中,展示了重组MaBG的潜在合成活性。本研究获得的信息拓宽了我们对这种变体白蚁GH1 β-葡萄糖苷酶的功能特性和其在生物转化和生物技术中的应用的理解。
  • β-d-glucosidases of Sclerotium rolfsii. Substrate specificity and mode of action
    作者:Jai C. Sadana、Jaiprakash G. Shewale、Rajkumar V. Patil
    DOI:10.1016/0008-6215(83)88048-3
    日期:1983.7
    Abstract The substrate specificity and mode of action of the four pure β- d -glucosidase enzymes (EC 3.2.1.21) from Sclerotium rolfsii were studied and their contribution to cellulolysis is discussed. The enzymes are specific for substrates having the β- d configuration. The specificity of the enzymes is not restricted to the β- d -(1→4) linkage, as all four β- d -glucosidases hydrolyzed substrates having
    摘要研究了Sclerotium rolfsii的四种纯β-d-葡萄糖苷酶(EC 3.2.1.21)的底物特异性和作用方式,并讨论了它们对纤维素分解的贡献。所述酶对具有β-d构型的底物具有特异性。酶的特异性不限于β-d-(1→4)键,因为所有四种β-d-葡糖苷酶水解的底物均具有β-d-(1→6)-,-(1→3)和-(1→2)链接。这些酶需要严格的ad-葡萄糖构型才能发挥活性。β-d-葡糖苷酶对高度有序的纤维素(例如Avicel)没有作用,但缓慢水解的无序纤维素(磷酸溶胀的Avicel)和羧甲基纤维素,以及快速的纤维糊精,可从非还原端去除d-葡萄糖残基。纯酶表现为外切-β-d-葡聚糖葡糖水解酶。随着纤维糊精链长的增加,所有四个β-d-葡萄糖苷酶的K m值均降低。纤维素戊糖是所有四种酶的优选底物。通过用罗氏链球菌β-d-葡萄糖苷酶水解从纤维素形成d-葡萄糖的主要途径是通过较高分子量的纤维糊精进行的。
  • Barley β-d-glucan exohydrolases. Substrate specificity and kinetic properties
    作者:Maria Hrmova、Geoffrey B. Fincher
    DOI:10.1016/s0008-6215(97)00257-7
    日期:1997.12
    exohydrolases (EC 3.2.1.58) from other sources, they can not be readily assigned to existing Enzyme Commission groups. However, amino acid sequence similarities suggest that the enzymes are members of the family 3 group of glycosyl hydrolases. The substrate specificities, action patterns, glycosyl transfer reactions and kinetic properties of the two β-glucan exohydrolases, purified from germinated barley (Hordeum
    摘要从发芽的大麦(大麦)中纯化得到的两种β-d-葡聚糖外水解酶和指定的同功酶ExoI和ExoII在一系列聚合的β-d-葡聚糖,β-连接的寡聚-d-葡萄糖苷和芳基β的水解过程中释放葡萄糖。 -d-葡萄糖苷。在检查的多糖底物中,尽管(1→3; 1→6)-和(1→3; 1→4)-β-d-葡聚糖也都偏向于(1→3)-β-葡聚糖。水解的。包含(1→2)-,(1→3)-,(1→4)-和(1→6)-β-连接的葡糖基残基的寡糖被两种酶水解,因此相对于在它们的底物中的连接位置。在高底物浓度(5–20 mM)下水解laminarabiose期间,可以检测到转糖基化反应。两种同工酶的最适pH均为5。25和钟形pH活性曲线。使用(1→3)-β-葡聚糖,指状海带的laminaran进行详细的动力学分析,可以计算出98和120μM的表观Km值,73和28 sec-1的催化速率常数(kcat)以及催化效率同功酶ExoI和ExoII的因子(kcat
  • Characterization of Recombinant Yeast Exo-β-1,3-Glucanase (Exg 1p) Expressed in Escherichia coli Cells
    作者:Kanako SUZUKI、Tomio YABE、Yutaka MARUYAMA、Keietsu ABE、Tasuku NAKAJIMA
    DOI:10.1271/bbb.65.1310
    日期:2001.1
    Yeast exo-β-1,3-glucanse gene (EXG1) was expressed in Escherichia coli and the recombinant enzyme (EXg1p) was characterized. The recombinant Exg1p had an apparent molecular mass of 45 kDa by SDS-PAGE and the enzyme has a broad specificity for β-1,3-link-ages as well as β-1,6-linkages, and also for other β-glucosidic linked substrates, such as cellobiose and pNPG. Kinetic analyses indicate that the enzyme prefers small substrates such as laminaribiose, gentiobiose, and pNPG rather than polysaccharide substrates, such as laminaran or pustulan. With a high concentration of laminaribiose, the enzyme catalyzed transglucosidation forming laminarioligosaccharides. The enzyme was strongly inhibited with high concentrations of laminaran.
    酵母 exo-β-1,3-葡聚糖酶基因 (EXG1) 在大肠杆菌中表达,并对重组酶 (EXg1p) 进行了特性分析。重组的 Exg1p 的表观分子量为 45 kDa(通过 SDS-PAGE 测定),该酶对 β-1,3 键和 β-1,6 键具有广泛的特异性,并且对其他 β-葡萄糖苷链接的底物(如纤维二糖和 pNPG)也具有活性。动力学分析表明,该酶更喜欢小底物,如兰梅糖、根茎糖和 pNPG,而不是多糖底物,如兰梅糖或双聚赖氨酸。高浓度的兰梅糖时,该酶催化转葡萄糖作用形成兰梅寡糖。在高浓度的兰梅糖下,该酶受到强烈抑制。
查看更多