Losartan is metabolized to an aldehyde intermediate, E-3179, which is further metabolized to a carboxylic acid, E-3174, by cytochrome P450s like CYP2C9. Losartan can also be hydroxylated to an inactive metabolite, P1. Approximately 14% of losartan is metabolized to E-3174. Losartan can be metabolized by CYP3A4, CYP2C9, and CYP2C10. Losartan can also be glucuronidated by UGT1A1, UGT1A3, UGT1A10, UGT2B7, and UGT 2B17.
Losartan is an orally active agent that undergoes substantial first-pass metabolism by cytochrome P450 enzymes. It is converted, in part, to an active carboxylic acid metabolite that is responsible for most of the angiotensin II receptor antagonism that follows losartan treatment. Losartan metabolites have been identified in human plasma and urine. In addition to the active carboxylic acid metabolite, several inactive metabolites are formed. Following oral and intravenous administration of (14)C-labeled losartan potassium, circulating plasma radioactivity is primarily attributed to losartan and its active metabolite. In vitro studies indicate that cytochrome P450 2C9 and 3A4 are involved in the biotransformation of losartan to its metabolites. Minimal conversion of losartan to the active metabolite (less than 1% of the dose compared to 14% of the dose in normal subjects) was seen in about one percent of individuals studied.
Losartan has known human metabolites that include Losartan carboxylic acid and 2-[5-[2-[4-[[2-butyl-5-chloro-4-(hydroxymethyl)-1H-imidazol-3-ium-3-yl]methyl]phenyl]phenyl]-1,5-dihydrotetrazol-2-yl]-6-(dihydroxymethyl)oxane-3,4,5-triol.
IDENTIFICATION AND USE: Losartan is a light yellow solid that is formulated into oral tablets. Losartan is an angiotensin II type 1 (AT1) receptor antagonist. It is used alone or in combination with other classes of antihypertensive agents in the management of hypertension. It is also used to reduce the risk of stroke in patients with hypertension and left ventricular hypertrophy and for the treatment of diabetic nephropathy in patients with type 2 diabetes and a history of hypertension. HUMAN EXPOSURE AND TOXICITY: The most likely manifestations of losartan overdose include hypotension and tachycardia; bradycardia could be encountered if parasympathetic (vagal) stimulation occurs. The use of lorsartan during pregnancy is contraindicated. While use during the first trimester does not suggest a risk of major anomalies, use during the second and third trimester may cause teratogenicity and severe fetal and neonatal toxicity. Fetal toxic effects may include anuria, oligohydramnios, fetal hypocalvaria, intrauterine growth restriction, premature birth, and patent ductus arteriosus. Anuria-associated oligohydramnios may produce fetal limb contractures, craniofacial deformation, and pulmonary hypoplasia. Severe anuria and hypotension that is resistant to both pressor agents and volume expansion may occur in the newborn following in utero exposure to losartan. ANIMAL STUDIES: Losartan potassium was not carcinogenic when administered at maximally tolerated dosages to rats and mice. Female rats given losartan had a slightly higher incidence of pancreatic acinar adenoma. Also, fertility and reproductive performance were not affected in studies with male rats given oral doses of losartan. The administration of toxic dosage levels in females was associated with a significant decrease in the number of corpora lutea/female, implants/female, and live fetuses/female at C-section. The relationship of these findings to drug-treatment is uncertain since there was no effect at these dosage levels on implants/pregnant female, percent post-implantation loss, or live animals/litter at parturition. Losartan has been shown to produce adverse effects in rat fetuses and neonates, including decreased body weight, delayed physical and behavioral development, mortality and renal toxicity. With the exception of neonatal weight gain doses associated with these effects exceeded 25 mg/kg. These findings are attributed to drug exposure in late gestation and during lactation. Losartan was negative in the microbial mutagenesis and V-79 mammalian cell mutagenesis assays and in the in vitro alkaline elution assay and in vitro and in vivo chromosomal aberration assays. In addition, the active metabolite showed no evidence of genotoxicity in the microbial mutagenesis, in vitro alkaline elution assay, and in vitro chromosomal aberration assays.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
肝毒性
洛萨坦与血清转氨酶升高的低发生率有关。
Losartan has been associated with a low rate of serum aminotransferase elevations (
Losartan is approximately 33% orally bioavailable. Losartan has a Tmax of 1 hour and the active metabolite has a Tmax of 3-4 hours. Taking losartan with food decreases the Cmax but does only results in a 10% decrease in the AUC of losartan and its active metabolite. A 50-80mg oral dose of losartan leads to a Cmax of 200-250ng/mL.
A single oral dose of losartan leads to 4% recovery in the urine as unchanged losartan, 6% in the urine as the active metabolite. Oral radiolabelled losartan is 35% recovered in urine and 60% in feces. Intravenous radiolabelled losartan is 45% recovered in urine and 50% in feces.
来源:DrugBank
吸收、分配和排泄
分布容积
洛萨坦的分布体积为34.4±17.9L,活性代谢物(E-3174)的分布体积为10.3±1.1L。
The volume of distribution of losartan is 34.4±17.9L and 10.3±1.1L for the active metabolite (E-3174).
Losartan has a total plasma clearance of 600mL/min and a renal clearance of 75mL/min. E-3174, the active metabolite, has a total plasma clearance of 50mL/min and a renal clearance of 25mL/min.
It is not known whether losartan is excreted in human milk, but significant levels of losartan and its active metabolite were shown to be present in rat milk.
DISUBSTITUTED TRIFLUOROMETHYL PYRIMIDINONES AND THEIR USE
申请人:BAYER PHARMA AKTIENGESELLSCHAFT
公开号:US20160221965A1
公开(公告)日:2016-08-04
The present application relates to novel 2,5-disubstituted 6-(trifluoromethyl)pyrimidin-4(3H)-one derivatives, to processes for their preparation, to their use alone or in combinations for the treatment and/or prevention of diseases, and to their use for preparing medicaments for the treatment and/or prevention of diseases, in particular for treatment and/or prevention of cardiovascular, renal, inflammatory and fibrotic diseases.
[EN] SULFONYL COMPOUNDS THAT INTERACT WITH GLUCOKINASE REGULATORY PROTEIN<br/>[FR] COMPOSÉS DE SULFONYLE QUI INTERAGISSENT AVEC LA PROTÉINE RÉGULATRICE DE LA GLUCOKINASE
申请人:AMGEN INC
公开号:WO2013123444A1
公开(公告)日:2013-08-22
The present invention relates to sulfonyl compounds that interact with glucokinase regulatory protein. In addition, the present invention relates to methods of treating type 2 diabetes, and other diseases and/or conditions where glucokinase regulatory protein is involved using the compounds, or pharmaceutically acceptable salts thereof, and pharmaceutical compositions that contain the compounds, or pharmaceutically acceptable salts thereof.
SULFOXIMINE SUBSTITUTED QUINAZOLINES FOR PHARMACEUTICAL COMPOSITIONS
申请人:BLUM Andreas
公开号:US20140135309A1
公开(公告)日:2014-05-15
This invention relates to novel sulfoximine substituted quinazoline derivatives of formula I
wherein Ar, R
1
and R
2
are as defined herein, and their use as MNK1 (MNK1a or MNK1b) and/or MNK2 (MNK2a or MNK2b) kinase inhibitors, pharmaceutical compositions containing the same, and methods of using the same as agents for treatment or amelioration of MNK1 (MNK1a or MNK1b) and/or MNK2 (MNK2a or MNK2b) mediated disorders.
[EN] SULFOXIMINE SUBSTITUTED QUINAZOLINES FOR PHARMACEUTICAL COMPOSITIONS<br/>[FR] QUINAZOLINES SUBSTITUÉES PAR SULFOXIMINE POUR COMPOSITIONS PHARMACEUTIQUES
申请人:BOEHRINGER INGELHEIM INT
公开号:WO2014072244A1
公开(公告)日:2014-05-15
This invention relates to novel sulfoximine substituted quinazoline derivatives of formula (I), wherein Ar, R1 and R2 are as defined in the description and claims, and their use as MNK1 (MNK1a or MNK1b) and/or MNK2 (MNK2a or MNK2b) kinase inhibitors, pharmaceutical compositions containing the same, and methods of using the same as agents for treatment or amelioration of MNK1 (MNK1a or MNK1b) and/or MNK2 (MNK2a or MNK2b) mediated disorders.
NOVEL GLUCOKINASE ACTIVATORS AND METHODS OF USING SAME
申请人:Ryono Denis E.
公开号:US20080009465A1
公开(公告)日:2008-01-10
Compounds are provided which are phosphonate and phosphinate activators and thus are useful in treating diabetes and related diseases and have the structure
wherein
is a heteroaryl ring;
R
4
is —(CH
2
)
n
-Z-(CH
2
)
m
—PO(OR
7
)(OR
8
), —(CH
2
)
n
Z-(CH
2
)
m
—PO(OR
7
)R
g
, —(CH
2
)
n
-Z-(CH
2
)
m
—OPO(OR
7
)R
g
, —(CH
2
)
n
Z—(CH
2
)
m
—OPO(R
9
)(R
10
), or —(CH
2
)
n
Z—(CH
2
)
m
—PO(R
9
)(R
10
);
R
5
and R
6
are independently selected from H, alkyl and halogen;
Y is R
7
(CH
2
)
s
or is absent; and
X, n, Z, m, R
4
, R
5
, R
6
, R
7
, and s are as defined herein; or a pharmaceutically acceptable salt thereof.
A method for treating diabetes and related diseases employing the above compounds is also provided.
提供了磷酸酯和磷酸酯激活剂,因此在治疗糖尿病和相关疾病方面非常有用,并具有以下结构:
其中
是杂环芳基环;
R
4
为—(CH
2
)
n
-Z-(CH
2
)
m
—PO(OR
7
)(OR
8
)、—(CH
2
)
n
Z-(CH
2
)
m
—PO(OR
7
)R
g
、—(CH
2
)
n
-Z-(CH
2
)
m
—OPO(OR
7
)R
g
、—(CH
2
)
n
Z—(CH
2
)
m
—OPO(R
9
)(R
10)
或—(CH
2
)
n
Z—(CH
2
)
m
—PO(R
9
)(R
10)
;
R
5
和R
6
分别选择自H、烷基和卤素;
Y为R
7
(CH
2
)
s
或不存在;以及
X、n、Z、m、R
4
、R
5
、R
6
、R
7
和s如本文所定义;或其药用盐。
还提供了一种利用上述化合物治疗糖尿病和相关疾病的方法。