摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3β-acetoxy-urs-12-en-28-oic acid ethyl ester

中文名称
——
中文别名
——
英文名称
3β-acetoxy-urs-12-en-28-oic acid ethyl ester
英文别名
3β-Acetoxy-urs-12-en-28-saeure-aethylester;3β-Acetoxy-ursen-(12)-saeure-(28)-aethylester;ethyl (1S,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-10-acetyloxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylate
3β-acetoxy-urs-12-en-28-oic acid ethyl ester化学式
CAS
——
化学式
C34H54O4
mdl
——
分子量
526.8
InChiKey
ZLUMZKCUGKQVNH-PNXZZNQOSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    8.6
  • 重原子数:
    38
  • 可旋转键数:
    5
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.88
  • 拓扑面积:
    52.6
  • 氢给体数:
    0
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    3β-acetoxy-urs-12-en-28-oic acid ethyl ester 在 sodium dichromate dihydrate 作用下, 以 溶剂黄146 为溶剂, 反应 5.0h, 以84.3%的产率得到3β-acetoxy-11-oxo-ursen-(12)-oic acid-(28)-ethyl ester
    参考文献:
    名称:
    五环三萜类化合物的合成、表征和体外抗增殖作用
    摘要:
    设计合成了一系列甘草次酸、齐墩果酸和熊果酸衍生物。所有新化合物的结构均通过1 H NMR、13 C NMR 和 HRMS 方法确定。评估了所有化合物对 A549、Hela 和 HepG2 癌细胞系的体外抗增殖作用。三种化合物G2、G3和G4对三种癌细胞显示出比阳性对照阿霉素更好的抗增殖作用。两种化合物O1和U11对Hela细胞显示出比阿霉素更好的抗增殖作用。四种化合物O2 , O3 , O8和U8表现出比对HepG2细胞阿霉素更好的抗增殖作用。值得注意的是,化合物G3对 Hela 和 HepG2 细胞的生长抑制作用最强,IC 50值分别为 0.16 ± 0.23 µM 和 0.33 ± 0.41 µM,化合物G2的生长抑制作用最强,IC 50值为 0.80 ± 1.03 µM在 A549 细胞上。
    DOI:
    10.1007/s00044-021-02795-6
  • 作为产物:
    描述:
    熊果酸4-二甲氨基吡啶 、 potassium hydroxide 作用下, 以 四氢呋喃二甲基亚砜 为溶剂, 反应 8.5h, 生成 3β-acetoxy-urs-12-en-28-oic acid ethyl ester
    参考文献:
    名称:
    五环三萜类化合物的合成、表征和体外抗增殖作用
    摘要:
    设计合成了一系列甘草次酸、齐墩果酸和熊果酸衍生物。所有新化合物的结构均通过1 H NMR、13 C NMR 和 HRMS 方法确定。评估了所有化合物对 A549、Hela 和 HepG2 癌细胞系的体外抗增殖作用。三种化合物G2、G3和G4对三种癌细胞显示出比阳性对照阿霉素更好的抗增殖作用。两种化合物O1和U11对Hela细胞显示出比阿霉素更好的抗增殖作用。四种化合物O2 , O3 , O8和U8表现出比对HepG2细胞阿霉素更好的抗增殖作用。值得注意的是,化合物G3对 Hela 和 HepG2 细胞的生长抑制作用最强,IC 50值分别为 0.16 ± 0.23 µM 和 0.33 ± 0.41 µM,化合物G2的生长抑制作用最强,IC 50值为 0.80 ± 1.03 µM在 A549 细胞上。
    DOI:
    10.1007/s00044-021-02795-6
点击查看最新优质反应信息

文献信息

  • In vitro and in vivo anticancer activity evaluation of ursolic acid derivatives
    作者:Jing-Wei Shao、Yong-Chao Dai、Jin-Ping Xue、Ji-Chuang Wang、Feng-Ping Lin、Yang-Hao Guo
    DOI:10.1016/j.ejmech.2011.03.050
    日期:2011.7
    Twenty-three ursolic acid (1) derivatives 2-24 (ten novel compounds 8-10, 14-17 and 22-24) modified at the C-3 and the C-28 positions were synthesized, and their structures were confirmed by IR, (1)H NMR, MS, and elemental analysis. The single crystals of compounds 15 and 17 were obtained. The cytotoxic activity of the derivatives was evaluated against HepG2, BGC-823, SH-SY5Y, HeLa and HELF cells by the MTT assay. The induction of apoptosis and affects on the cell cycle distribution with compound 14 were assessed by fluorescence microscopy, flow cytometry and the activity of caspase-3 in HepG2 cells. Compounds 14-17 had more significant antiproliferative ability against the four cancer cell lines and low cytotoxicity to human embryonic lung fibroblast cells (HELF). Compounds 11, 14-16, 21 and 23 were particularly active against HepG2 cell growth. Compound 14 was selected to investigate cell apoptosis and cell cycle distribution. Flow cytometric analysis and morphologic changes of the cell exhibited that treatment of HepG2 cells with compound 14 led to cell apoptosis accompanied by cell cycle arrest at the S phase in a dose-dependent manner. Furthermore, the activity of the caspase-3 enzyme was increased in the treated cells. In vivo studies using H22 xenografts in Kunming mice were conducted with compound 14 at doses of 50, 100 and 150 mg/kg body weight The results revealed that the medium dosage group (100 mg/kg) showed significant anticancer activity (45.6 +/- 4.3%) compared to the control group. (C) 2011 Elsevier Masson SAS. All rights reserved.
  • Drug Resistance Reversal Potential of Ursolic Acid Derivatives against Nalidixic Acid- and Multidrug-resistant<i>Escherichia coli</i>
    作者:Gaurav Raj Dwivedi、Anupam Maurya、Dharmendra Kumar Yadav、Feroz Khan、Mahendra P. Darokar、Santosh Kumar Srivastava
    DOI:10.1111/cbdd.12491
    日期:2015.9
    As a part of our drug discovery program, ursolic acid was chemically transformed into six semi‐synthetic derivatives, which were evaluated for their antibacterial and drug resistance reversal potential in combination with conventional antibiotic nalidixic acid against the nalidixic acid‐sensitive and nalidixic acid‐resistant strains of Escherichia coli. Although ursolic acid and its all semi‐synthetic derivatives did not show antibacterial activity of their own, but in combination, they significantly reduced the minimum inhibitory concentration of nalidixic acid up to eightfold. The 3‐O‐acetyl‐urs‐12‐en‐28‐isopropyl ester (UA‐4) and 3‐O‐acetyl‐urs‐12‐en‐28‐n‐butyl ester (UA‐5) derivatives of ursolic acid reduced the minimum inhibitory concentration of nalidixic acid by eightfold against nalidixic acid‐resistant and four and eightfold against nalidixic acid‐sensitive, respectively. The UA‐4 and UA‐5 were further evaluated for their synergy potential with another antibiotic tetracycline against the multidrug‐resistant clinical isolate of Escherichia coliKG4. The results showed that both these derivatives in combination with tetracycline reduced the cell viability in concentration‐dependent manner by significantly inhibiting efflux pump. This was further supported by the in silico binding affinity of UA‐4 and UA‐5 with efflux pump proteins. These ursolic acid derivatives may find their potential use as synergistic agents in the treatment of multidrug‐resistant Gram‐negative infections.
  • 139. The triterpene resinols and related acids. Part XIV. The oxidation of acetylursolic acid
    作者:E. S. Ewen、F. S. Spring
    DOI:10.1039/jr9430000523
    日期:——
  • Syrjae, Suomen Kemistilehti B, 1954, vol. 27, p. 71,73
    作者:Syrjae
    DOI:——
    日期:——
  • Sevoflurane mask anesthesia for urgent tracheostomy in an uncooperative trauma patient with a difficult airway
    作者:charles E. Smith、William F. Fallon
    DOI:10.1007/bf03018920
    日期:2000.3
    Purpose: Proper care of the trauma patient often includes tracheal intubation to insure adequate ventilation and oxygenation, protect the airway from aspiration, and facilitate surgery. Airway management can be particularly complex when there are facial bone fractures, head injury and cervical spine instability.Clinical Features: A 29-yr-old intoxicated woman suffered a motor vehicle accident. Injuries consisted of multiple abrasions to her head, forehead, and face, right temporal lobe hemorrhage, and complex mandibular fractures with displacement. Mouth opening was < 10 mm. Blood pressure was 106/71 mmHg, pulse 109, respirations 18, temperature 37.3 degrees C, SpO(2) 100%. Chest and pelvic radiographs were normal and the there was increased anterior angulation of C4-C5 on the cervical spine film. Drug screen was positive for cocaine and alcohol. The initial plan was to perform awake tracheostomy with local anesthesia, However, the patient was uncooperative despite sedation and infiltration of local anesthesia. Sevoflurane, 1%, inspired in oxygen 100%, was administered via face mask. The concentration of sevoflurane was gradually increased to 4%, and loss of consciousness occurred within one minute. The patient breathed spontaneously and required gentle chin lift and jaw thrust. A cuffed tracheostomy tube was surgically inserted without complication. Blood gas showed pH 7.40, PCO2 35 mmHg, PO2 396 mmHg, hematocrit 33.6%. Diagnostic peritoneal lavage was negative. Pulmonary aspiration did not occur. Oxygenation and ventilation were maintained throughout the procedure.Conclusion: Continuous mask Ventilation with sevoflurane is an appropriate technique when confronted with an uncooperative trauma patient with a difficult airway.
查看更多

同类化合物

(5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,11-二酮 齐墩果-12-烯-2α,3β,28-三醇 齐墩果-12-烯-29-酸,3,22-二羟基-11-羰基-,g-内酯,(3b,20b,22b)- 齐墩果-12-烯-28-酸,3-[(6-脱氧-4-O-b-D-吡喃木糖基-a-L-吡喃鼠李糖基)氧代]-,(3b)-(9CI) 鼠特灵 鼠尾草酸醌 鼠尾草酸 鼠尾草酚酮 鼠尾草苦内脂 黑蚁素 黑蔓醇酯B 黑蔓醇酯A 黑蔓酮酯D 黑海常春藤皂苷A1 黑檀醇 黑果茜草萜 B 黑五味子酸 黏黴酮 黏帚霉酸 黄黄质 黄钟花醌 黄质醛 黄褐毛忍冬皂苷A 黄蝉花素 黄蝉花定