摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

依他普仑 | 128196-01-0

中文名称
依他普仑
中文别名
(+)-(S)-西酞普兰草酸盐;依地普伦;右旋西酞普兰;1-(3-二甲基氨基丙基)-1-(4-氟苯基)-1,3-二氢异苯并呋喃-5-甲腈;艾司西酞普兰;依西酞普兰
英文名称
escitalopram
英文别名
(S)-citalopram;(S)-1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile;lexapro;escitalopram oxalate;Cipralex;(1 S)-1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile;citalopram;(1S)-1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-3H-2-benzofuran-5-carbonitrile
依他普仑化学式
CAS
128196-01-0
化学式
C20H21FN2O
mdl
——
分子量
324.398
InChiKey
WSEQXVZVJXJVFP-FQEVSTJZSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 比旋光度:
    D +12.33° (c = 1 in methanol)
  • 沸点:
    428.3±45.0 °C(Predicted)
  • 密度:
    1.18±0.1 g/cm3(Predicted)
  • 溶解度:
    溶于二甲基亚砜
  • 物理描述:
    Solid
  • 熔点:
    147-152C
  • 蒸汽压力:
    1.13X10-7 mm Hg at 25 °C (est)
  • 稳定性/保质期:
    Stable under recommended storage conditions. /Escitalopram oxalate/
  • 旋光度:
    Specific optical rotation: +12.33 deg at 25 °C/D (c = 1 in methanol)
  • 解离常数:
    pKa = 9.80 (amine moiety) /Trimethylamine/ (conjugate acid)

计算性质

  • 辛醇/水分配系数(LogP):
    3.2
  • 重原子数:
    24
  • 可旋转键数:
    5
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.35
  • 拓扑面积:
    36.3
  • 氢给体数:
    0
  • 氢受体数:
    4

ADMET

代谢
艾司西酞普兰的代谢主要发生在肝脏,主要通过CYP2C19和CYP3A4,以及较少程度的CYP2D6进行。CYP酶系统通过氧化N-脱甲基作用产生S-去甲基西酞普兰(S-DCT)和S-双去甲基西酞普兰(S-DDCT)——这些代谢物对艾司西酞普兰的药理活性没有贡献,并且相对于母体化合物在血浆中的含量较少(分别为28-31%和<5%)。还有一些证据表明,艾司西酞普兰在大脑中被单胺氧化酶A和B代谢为丙酸代谢物,而这些酶在大脑中构成了艾司西酞普兰的主要代谢途径。
The metabolism of escitalopram is mainly hepatic, mediated primarily by CYP2C19 and CYP3A4 and, to a lesser extent, CYP2D6. Oxidative N-demethylation by the CYP enzyme system results in S-desmethylcitalopram (S-DCT) and S-didesmethylcitalopram (S-DDCT) - these metabolites do not contribute to the pharmacologic activity of escitalopram, and exist in the plasma in small quantities relative to the parent compound (28-31% and <5%, respectively). There is also some evidence that escitalopram is metabolized to a propionic acid metabolite by monoamine oxidase A and B in the brain, and that these enzymes constitute the major route of escitalopram metabolism in the brain.
来源:DrugBank
代谢
抗抑郁药艾司西酞普兰主要通过多态性CYP2C19酶代谢。作者研究了CYP2C19基因型对艾司西酞普兰暴露程度和治疗失败的影响,研究对象为大量患者群体。从奥斯陆Diakonhjemmet医院的药物监测数据库中回顾性地收集了2,087名经过CYP2C19基因分型的患者在服药后10-30小时内的4,228份艾司西酞普兰血清浓度测量值。根据CYP2C19基因型,患者被分为亚组:携带无效(CYP2C19Null)和功能获得性(CYP2C19*17)变异等位基因的患者。通过多元混合模型和卡方分析,分别评估了亚组间艾司西酞普兰暴露程度(终点:剂量调整后的血清浓度)和治疗失败(终点:在最后一次艾司西酞普兰测量后1年内换用其他抗抑郁药)的差异。与CYP2C19*1/*1组相比,CYP2C19Null/Null组的艾司西酞普兰血清浓度显著增加了3.3倍,CYP2C19*Null/*1组增加了1.6倍,CYP2C19Null/*17组增加了1.4倍,而CYP2C19*1/*17组的艾司西酞普兰血清浓度显著下降了10%,CYP1C19*17/*17组下降了20%。与CYP2C19*1/*1组相比,CYP2C19Null/Null组、CYP2C19*1/*17组和CYP1C19*17/*17组在1年内从艾司西酞普兰换用其他抗抑郁药的频率分别高出3.3倍、1.6倍和3.0倍。CYP2C19基因型对艾司西酞普兰的暴露程度和治疗失败有显著影响,这是通过换用抗抑郁治疗来衡量的。结果支持了CYP2C19基因分型对艾司西酞普兰治疗个性化的潜在临床价值。
The antidepressant escitalopram is predominantly metabolized by the polymorphic CYP2C19 enzyme. The authors investigated the effect of CYP2C19 genotype on exposure and therapeutic failure of escitalopram in a large patient population. A total of 4,228 escitalopram serum concentration measurements from 2,087 CYP2C19-genotyped patients 10-30 hours after drug intake were collected retrospectively from the drug monitoring database at Diakonhjemmet Hospital in Oslo. The patients were divided into subgroups based on CYP2C19 genotype: those carrying inactive (CYP2C19Null) and gain-of-function (CYP2C19*17) variant alleles. The between-subgroup differences in escitalopram exposure (endpoint: dose-harmonized serum concentration) and therapeutic failure (endpoint: switching to another antidepressant within 1 year after the last escitalopram measurement) were evaluated by multivariate mixed model and chi-square analysis, respectively. Compared with the CYP2C19*1/*1 group, escitalopram serum concentrations were significantly increased 3.3-fold in the CYP2C19Null/Null group, 1.6-fold in the CYP2C19*Null/*1 group, and 1.4-fold in the CYP2C19Null/*17 group, whereas escitalopram serum concentrations were significantly decreased by 10% in the CYP2C19*1/*17 group and 20% in the CYP1C19*17/*17 group. In comparison to the CYP2C19*1/*1 group, switches from escitalopram to another antidepressant within 1 year were 3.3, 1.6, and 3.0 times more frequent among the CYP2C19Null/Null, CYP2C19*1/*17, and CYP1C19*17/*17 groups, respectively. The CYP2C19 genotype had a substantial impact on exposure and therapeutic failure of escitalopram, as measured by switching of antidepressant therapy. The results support the potential clinical utility of CYP2C19 genotyping for individualization of escitalopram therapy.
来源:Hazardous Substances Data Bank (HSDB)
代谢
艾司西酞普兰被代谢为S-去甲基西酞普兰(S-DCT)和S-二去甲基西酞普兰(S-DDCT)。在人体内,未改变的艾司西酞普兰是血浆中的主要化合物。在稳态下,艾司西酞普兰代谢物S-DCT在血浆中的浓度大约是艾司西酞普兰的三分之一。大多数受试者中S-DDCT的水平无法检测到。体外研究表明,艾司西酞普兰在抑制血清素再摄取方面的效力至少是S-DCT的7倍,S-DDCT的27倍,这表明艾司西酞普兰的代谢物对艾司西酞普兰的抗抑郁作用没有显著贡献。S-DCT和S-DDCT对5-羟色胺(5-HT1-7)或其他受体,包括α-和β-肾上腺素能、多巴胺(D1-5)、组胺(H1-3)、毒蕈碱(M1-5)和苯二氮卓受体的亲和力很低或没有。S-DCT和S-DDCT也不会结合到各种离子通道,包括Na+、K+、Cl-和Ca++通道。使用人肝微粒体的体外研究表明,CYP3A4和CYP2C19是参与艾司西酞普兰N-去甲基化反应的主要同工酶。
Escitalopram is metabolized to S-demethylcitalopram (S-DCT) and S-didemethylcitalopram (S-DDCT). In humans, unchanged escitalopram is the predominant compound in plasma. At steady state, the concentration of the escitalopram metabolite S-DCT in plasma is approximately one-third that of escitalopram. The level of S-DDCT was not detectable in most subjects. In vitro studies show that escitalopram is at least 7 and 27 times more potent than S-DCT and S-DDCT, respectively, in the inhibition of serotonin reuptake, suggesting that the metabolites of escitalopram do not contribute significantly to the antidepressant actions of escitalopram. S-DCT and S-DDCT also have no or very low affinity for serotonergic (5-HT1-7) or other receptors including alpha- and beta-adrenergic, dopamine (D1-5), histamine (H1-3), muscarinic (M1-5), and benzodiazepine receptors. S-DCT and S-DDCT also do not bind to various ion channels including Na+, K+, Cl-, and Ca++ channels. In vitro studies using human liver microsomes indicated that CYP3A4 and CYP2C19 are the primary isozymes involved in the Ndemethylation of escitalopram.
来源:Hazardous Substances Data Bank (HSDB)
代谢
主要在肝脏进行。艾司西酞普兰经过N-去甲基化转化为S-去甲基西酞普兰(S-DCT)和S-二去甲基西酞普兰(S-DDCT)。CYP3A4和CYP2C19是负责这一N-去甲基化反应的酶。 消除途径:口服艾司西酞普兰后,药物在尿液中以艾司西酞普兰和S-去甲基西酞普兰(S-DCT)的形式回收的比例分别约为8%和10%。艾司西酞普兰的口服清除率为600 mL/min,其中大约7%是通过肾脏清除。艾司西酞普兰代谢为S-DCT和S-二去甲基西酞普兰(S-DDCT)。 半衰期:27-32小时
Mainly hepatic. Escitalopram undergoes <i>N</i>-demethylation to <i>S</i>-demethylcitalopram (S-DCT) and <i>S</i>-didemethylcitalopram (S-DDCT). CYP3A4 and CYP2C19 are the enzymes responsible for this <i>N</i>-demethylation reaction. Route of Elimination: Following oral administrations of escitalopram, the fraction of drug recovered in the urine as escitalopram and <i>S</i>-demethylcitalopram (S-DCT) is about 8% and 10%, respectively. The oral clearance of escitalopram is 600 mL/min, with approximately 7% of that due to renal clearance. Escitalopram is metabolized to S-DCT and <i>S</i>-didemethylcitalopram (S-DDCT). Half Life: 27-32 hours
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
识别和使用:艾司西酞普兰是一种第二代抗抑郁药。它用于成人以及12至17岁青少年的重度抑郁症的急性治疗和维持治疗。人体研究:抗抑郁药停药综合症(ADS)在突然停用抗抑郁药的病人中经常发生。在艾司西酞普兰中,25名患者中有14名观察到了ADS。常见症状包括头晕(44%)、肌肉紧张(44%)、寒战(44%)、混乱或集中困难(40%)、遗忘(28%)和哭泣(28%)。艾司西酞普兰过量的主要表现是血清素毒性、QT间期延长和心动过缓。其他伴随艾司西酞普兰过量的症状,单独或与其他药物和/或酒精联合使用,包括抽搐、昏迷、头晕、低血压、失眠、恶心、呕吐、窦性心动过速和嗜睡。急性肾衰竭在过量时非常罕见地有报道。艾司西酞普兰似乎与主要畸形的风险增加无关,但似乎增加了低出生体重的风险。此外,观察到自然流产率较高。描述了一个由于子宫内暴露于艾司西酞普兰导致的血清素中毒的案例。在人类外周淋巴细胞中,由5和10微克/毫升的艾司西酞普兰引起的姐妹染色单体交换增加被发现,而DNA损伤和微核(MN)形成没有观察到增加。该药物的消旋形式在人类淋巴细胞的体外染色体畸变分析中不是致突变剂。动物研究:在一项为期一年的毒理学研究中,10只比格犬中有5只在口服消旋药物剂量为8毫克/千克/天的情况下,在治疗开始后的第17周到第31周之间突然死亡。在大鼠中,消旋药物的剂量高达120毫克/千克/天并未观察到突然死亡。随后的静脉注射剂量研究证明,在比格犬中,消旋代谢物引起了QT间期延长。在白化大鼠的2年致癌性研究中,视网膜出现了病理变化(变性/萎缩)。在接受80毫克/千克/天的雄性和雌性大鼠中,视网膜病变的发生率和严重程度都有所增加。在接受24毫克/千克/天的消旋药物两年的大鼠、接受高达240毫克/千克/天的消旋药物18个月的小鼠或接受高达20毫克/千克/天的消旋药物一年的狗中,没有观察到类似发现。在两项大鼠胚胎/胎儿发育研究中,口服给予消旋药物(32、56或112毫克/千克/天)给怀孕动物,在器官形成期间,高剂量导致了胚胎/胎儿生长和存活的减少以及胎儿异常(包括心血管和骨骼缺陷)的发生率增加。这个剂量在大鼠中也与母体毒性相关。在兔子的研究中,在消旋西酞普兰剂量高达16毫克/千克/天的情况下,没有观察到对胚胎/胎儿发育的负面影响。消旋药物在体外细菌反向突变分析(Ames试验)的5个细菌株中的2个(Salmonella TA98和TA1537)在无代谢激活的情况下是致突变剂。在体外中国仓鼠肺细胞染色体畸变分析中,在存在和缺乏代谢激活的情况下是致突变剂。消旋药物在体外哺乳动物正向基因突变分析(HPRT)的小鼠淋巴瘤细胞中或在体内/体外未计划DNA合成(UDS)分析的大鼠肝脏中不是致突变剂。生态毒性研究:在斑马鱼的行为反应中,艾司西酞普兰有明显的性别差异。在暴露结束时,暴露于1.50微克/升艾司西酞普兰的雌性斑马鱼的长度和重量明显低于对照组的鱼。此外,暴露于1.50微克/升艾司西酞普兰的雄性斑马鱼比对照组的鱼要短得多。
IDENTIFICATION AND USE: Escitalopram is a second-generation antidepressive agent. It is used for the acute and maintenance treatment of major depressive disorder in adults and in adolescents 12 to 17 years of age. HUMAN STUDIES: Antidepressant discontinuation syndrome (ADS) frequently occurs in patients who undergo an abrupt discontinuation of their antidepressant medication. For escitalopram ADS was observed in 14 of 25 patients. Frequent symptoms were dizziness (44%), muscle tension (44%), chills (44%), confusion or trouble concentrating (40%), amnesia (28%), and crying (28%). Major manifestations of escitalopram overdose were serotonin toxicity, QT prolongation, and bradycardia. Other symptoms accompanying escitalopram overdose, alone or in combination with other drugs and/or alcohol, included convulsions, coma, dizziness, hypotension, insomnia, nausea, vomiting, sinus tachycardia, and somnolence. Acute renal failure has been very rarely reported accompanying overdose. Escitalopram does not appear to be associated with an increased risk for major malformations but appears to increase the risk for low birth weight. In addition, the higher rates of spontaneous abortions have been observed. A case of serotonin toxicity due to in utero exposure to escitalopram was described. In human peripheral lymphocytes sister chromatid exchange increase caused by 5 and 10 ug/mL of escitalopram was found, while no increase was observed in DNA damage and micronucleus (MN) formation. Racemic form of the drug was not clastogenic in the in vitro chromosomal aberration assay in human lymphocytes. ANIMAL STUDIES: In a one-year toxicology study, 5 of 10 beagle dogs receiving oral racemic drug doses of 8 mg/kg/day died suddenly between weeks 17 and 31 following initiation of treatment. Sudden deaths were not observed in rats at doses of racemic drug up to 120 mg/kg/day. A subsequent intravenous dosing study demonstrated that in beagle dogs, racemic metabolites caused QT prolongation. Pathologic changes (degeneration/atrophy) were observed in the retinas of albino rats in the 2-year carcinogenicity study with racemic drug. There was an increase in both incidence and severity of retinal pathology in both male and female rats receiving 80 mg/kg/day. Similar findings were not present in rats receiving 24 mg/kg/day of racemic drug for two years, in mice receiving up to 240 mg/kg/day of racemic drug for 18 months, or in dogs receiving up to 20 mg/kg/day of racemic drug for one year. In two rat embryo/fetal development studies, oral administration of racemic drug (32, 56, or 112 mg/kg/day) to pregnant animals during the period of organogenesis resulted in decreased embryo/fetal growth and survival and an increased incidence of fetal abnormalities (including cardiovascular and skeletal defects) at the high dose. This dose was also associated with maternal toxicity in rats. In a rabbit study, no adverse effects on embryo/fetal development were observed at doses of racemic citalopram of up to 16 mg/kg/day. Racemic drug was mutagenic in the in vitro bacterial reverse mutation assay (Ames test) in 2 of 5 bacterial strains (Salmonella TA98 and TA1537) in the absence of metabolic activation. It was clastogenic in the in vitro Chinese hamster lung cell assay for chromosomal aberrations in the presence and absence of metabolic activation. Racemic drug was not mutagenic in the in vitro mammalian forward gene mutation assay (HPRT) in mouse lymphoma cells or in a coupled in vitro/in vivo unscheduled DNA synthesis (UDS) assay in rat liver. ECOTOXICITY STUDIES: There were noticeable gender differences in the behavior responses to escitalopram in zebrafish. At the end of exposures, both length and weight of the females exposed to 1.50 ug/L escitalopram were significantly less than the group of control fish. In addition, males exposed to 1.50 ug/L escitalopram were significantly shorter than control fish.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
抗抑郁药、抗强迫症和抗贪食症的作用被认为是与它抑制中枢神经系统神经元对5-羟色胺的摄取有关。艾司西酞普兰阻断了神经元膜上5-羟色胺再摄取泵的5-羟色胺再摄取,增强了5-羟色胺对5HT<sub>1A</sub>自受体的作用。与三环类抗抑郁药相比,SSRIs对组胺、乙酰胆碱和去甲肾上腺素受体的亲和力要低得多。
The antidepressant, antiobsessive-compulsive, and antibulimic actions of escitalopram are presumed to be linked to its inhibition of CNS neuronal uptake of serotonin. Escitalopram blocks the reuptake of serotonin at the serotonin reuptake pump of the neuronal membrane, enhancing the actions of serotonin on 5HT<sub>1A</sub> autoreceptors. SSRIs bind with significantly less affinity to histamine, acetylcholine, and norepinephrine receptors than tricyclic antidepressant drugs.
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 药物性肝损伤
化合物:艾司西酞普兰
Compound:escitalopram
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
毒理性
  • 药物性肝损伤
药物性肝损伤标注:低药物性肝损伤关注
DILI Annotation:Less-DILI-Concern
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
毒理性
  • 药物性肝损伤
严重程度等级:7
Severity Grade:7
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
吸收、分配和排泄
  • 吸收
口服给药后,艾司西酞普兰的吸收预计几乎是完全的,估计绝对生物利用度大约为80%。达到最高血药浓度(Tmax)大约需要4-5小时。血药浓度峰值(Cmax)和药时曲线下面积(AUC)似乎遵循剂量比例关系 - 在稳态下,每天接受10毫克艾司西酞普兰的患者Cmax为21 ng/mL,24小时AUC约为360 ng*h/mL,而每天接受30毫克的患者Cmax和24小时AUC都大约增加了3倍。
Absorption of escitalopram following oral administration is expected to be almost complete, with an estimated absolute bioavailability of approximately 80%. Tmax occurs after about 4-5 hours. Cmax and AUC appear to follow dose proportionality - at steady state, patients receiving 10mg of escitalopram daily had a Cmax of 21 ng/mL and a 24h AUC of approximately 360 ng*h/mL, while patients receiving 30mg daily had a roughly 3-fold increase in both Cmax and 24h AUC, comparatively.
来源:DrugBank
吸收、分配和排泄
  • 消除途径
口服艾司西酞普兰后,大约8%的总剂量以未改变的艾司西酞普兰形式在尿液中排出,10%以S-去甲基西酞普兰形式在尿液中排出。艾司西酞普兰的表观肝清除率大约为总剂量的90%。
After oral administration of escitalopram, approximately 8% of the total dose is eliminated in the urine as unchanged escitalopram and 10% is eliminated in the urine as S-desmethylcitalopram. The apparent hepatic clearance of escitalopram amounts to approximately 90% of the total dose.
来源:DrugBank
吸收、分配和排泄
  • 分布容积
艾司西酞普兰似乎广泛分布于组织中,其表观分布体积大约为12-26升/千克。
Escitalopram appears to distribute extensively into tissues, with an apparent volume of distribution of approximately 12-26 L/kg.
来源:DrugBank
吸收、分配和排泄
  • 清除
艾司西酞普兰的口服血浆清除率为600 mL/min,其中大约7%是由于肾脏清除。
The oral plasma clearance of escitalopram is 600 mL/min, of which approximately 7% is due to renal clearance.
来源:DrugBank
吸收、分配和排泄
/牛奶/ 欧西汀在人类乳汁中排泄。来自服用10-20毫克欧西汀的妇女的有限数据显示,仅以母乳喂养的婴儿大约会接收到相当于母亲体重调整剂量3.9%的欧西汀和1.7%的去甲基西汀。
/MILK/ Escitalopram is excreted in human breast milk. Limited data from women taking 10-20 mg escitalopram showed that exclusively breast-fed infants receive approximately 3.9% of the maternal weight-adjusted dose of escitalopram and 1.7% of the maternal weight-adjusted dose of desmethylcitalopram.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 海关编码:
    2932999099
  • 储存条件:
    | 2-8℃ |

SDS

SDS:3f6e4bc34c4c0f9efd63c168a9be0926
查看

制备方法与用途

生物活性

Escitalopram ((S)-Citalopram) 是外消旋 Citalopram 的 S-对映体,是一种选择性 5-羟色胺再摄取抑制剂 (SSRI),其与 5-羟色胺转运体 (Ki 为 0.89 nM) 的结合亲和力比 R(-)-对映体高 30 倍。Escitalopram 对多巴胺转运体 (DAT) 和去甲肾上腺素转运体 (NET) 具有选择性作用,并且被用作研究抑郁症的抗抑郁药。

靶点
  • Ki: 5-HT 转运体:0.89 nM,DAT:10,500 nM,NET:8,150 nM
体内研究

Escitalopram (10 mg/kg;i.p.;连续给药 28 天) 可改善受压大鼠的认知功能障碍并选择性地减少磷酸化 tau 蛋白的积累。慢性给予 Escitalopram(饮水,共4个月)显著减少了脑内斑块负荷:每天2.5 mg/d和5 mg/d分别减少了28%和34%。

动物模型与结果
  • 实验动物:雄性 Sprague-Dawley 大鼠

  • 剂量:10 mg/kg

  • 给药方式:腹腔注射,连续 28 天

  • 结果:显著减少应激大鼠海马区磷酸化 tau 蛋白积累,并明显减轻抑郁和难治性大鼠的肾上腺皮质轴高反应性。

  • 实验动物:APP-PS1 半合子雌性小鼠(4 个月龄)

  • 剂量:2.5 mg/kg 和 5 mg/kg

  • 给药方式:连续 4 个月饮水

  • 结果:与仅喝水的对照组相比,这两个剂量显著减少了大脑内的斑块负荷。海马区斑块负担分别减少了 28.7% 和 34.4%(每天 2.5 mg 和 5 mg)。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2

反应信息

  • 作为反应物:
    描述:
    依他普仑草酸 作用下, 以 乙醇 为溶剂, 反应 10.5h, 生成 草酸右旋西酞普兰
    参考文献:
    名称:
    Process for resolving citalopram via its (S)-enriched citalopram tartrate compound.
    摘要:
    公开号:
    EP1988086B2
  • 作为产物:
    描述:
    草酸右旋西酞普兰ammonium hydroxide 作用下, 以 乙醚 为溶剂, 以30.1 g的产率得到依他普仑
    参考文献:
    名称:
    [EN] NEW SALT AND SOLID STATE FORMS OF ESCITALOPRAM
    [FR] NOUVEAU SEL ET FORMES À L'ÉTAT SOLIDE D'ESCITALOPRAM
    摘要:
    本公开涉及氟西汀的新盐及其固态形式,其制备方法,药物组合物以及使用方法。
    公开号:
    WO2019073388A1
点击查看最新优质反应信息

文献信息

  • [EN] COMPOUNDS AND THEIR USE AS BACE INHIBITORS<br/>[FR] COMPOSÉS ET LEUR UTILISATION EN TANT QU'INHIBITEURS DE BACE
    申请人:ASTRAZENECA AB
    公开号:WO2016055858A1
    公开(公告)日:2016-04-14
    The present application relates to compounds of formula (I), (la), or (lb) and their pharmaceutical compositions/preparations. This application further relates to methods of treating or preventing Αβ-related pathologies such as Down's syndrome, β- amyloid angiopathy such as but not limited to cerebral amyloid angiopathy or hereditary cerebral hemorrhage, disorders associated with cognitive impairment such as but not limited to MCI ("mild cognitive impairment"), Alzheimer's disease, memory loss, attention deficit symptoms associated with Alzheimer's disease, neurodegeneration associated with diseases such as Alzheimer's disease or dementia, including dementia of mixed vascular and degenerative origin, pre-senile dementia, senile dementia and dementia associated with Parkinson's disease.
    本申请涉及式(I)、(Ia)或(Ib)的化合物及其药物组合物/制剂。本申请进一步涉及治疗或预防与Αβ相关的病理学,如唐氏综合症,β-淀粉样蛋白血管病,如但不限于脑淀粉样蛋白血管病或遗传性脑出血,与认知损害相关的疾病,如但不限于MCI(“轻度认知损害”),阿尔茨海默病,记忆丧失,与阿尔茨海默病相关的注意力缺陷症状,与疾病如阿尔茨海默病或痴呆症相关的神经退行性疾病,包括混合性血管性和退行性起源的痴呆,早老性痴呆,老年性痴呆和与帕金森病相关的痴呆的方法。
  • [EN] QUINAZOLINE DERIVATIVES, COMPOSITIONS, AND USES RELATED THERETO<br/>[FR] DÉRIVÉS DE QUINAZOLINE, COMPOSITIONS ET UTILISATIONS ASSOCIÉES
    申请人:UNIV EMORY
    公开号:WO2013181135A1
    公开(公告)日:2013-12-05
    The disclosure relates to quinazoline derivatives, compositions, and methods related thereto. In certain embodiments, the disclosure relates to inhibitors of NADPH-oxidases (Nox enzymes) and/or myeloperoxidase.
    该披露涉及喹唑啉衍生物、组合物以及相关方法。在某些实施例中,该披露涉及NADPH-氧化酶(Nox酶)和/或髓过氧化物酶的抑制剂。
  • [EN] SPIROLACTAM CGRP RECEPTOR ANTAGONISTS<br/>[FR] ANTAGONISTES DE RÉCEPTEUR DE CGRP À BASE DE SPIROLACTAME
    申请人:MERCK SHARP & DOHME
    公开号:WO2013169567A1
    公开(公告)日:2013-11-14
    The present invention is directed to spirolactam analogues which are antagonists of CGRP receptors and useful in the treatment or prevention of diseases in which CGRP is involved, such as migraine. The invention is also directed to pharmaceutical compositions comprising these compounds and the use of these compounds and compositions in the prevention or treatment of such diseases in which CGRP is involved.
    本发明涉及螺内酰胺类似物,其为CGRP受体拮抗剂,可用于治疗或预防涉及CGRP的疾病,如偏头痛。该发明还涉及包含这些化合物的药物组合物,以及在预防或治疗涉及CGRP的这类疾病中使用这些化合物和组合物。
  • [EN] PROCESSES USEFUL FOR THE SYNTHESIS OF (R)-1-{2-[4'-(3-METHOXYPROPANE-1-SULFONYL)-BIPHENYL-4-YL]-ETHYL}-2-METHYL-PYRROLIDINE<br/>[FR] PROCÉDÉS UTILES POUR LA SYNTHÈSE DE LA (R)-1-{2-[4'-(3-MÉTHOXYPROPANE-1-SULFONYL)-BIPHÉNYL-4-YL]-ÉTHYL}-2-MÉTHYL-PYRROLIDINE
    申请人:ARENA PHARM INC
    公开号:WO2009128907A1
    公开(公告)日:2009-10-22
    Processes useful for making a pharmaceutically useful compound according to Formula (I), forms of such a compound, and intermediates useful in such processes are described.
    根据公式(I)制备药用化合物的有用过程,以及该化合物的形式和在这些过程中有用的中间体被描述。
  • [EN] IMIDAZOPYRIDINE COMPOUNDS AND USES THEREOF<br/>[FR] COMPOSÉS IMIDAZOPYRIDINE ET LEURS UTILISATIONS
    申请人:NEOMED INST
    公开号:WO2014117274A1
    公开(公告)日:2014-08-07
    This invention generally relates to substituted imidazopyridine compounds, particularly substituted 4-(imidazo[1,2-a]pyridin-2-yl)benzamide compounds and salts thereof. This invention also relates to pharmaceutical compositions and kits comprising such a compound, uses of such a compound (including, for example, treatment methods and medicament preparations), processes for making such a compound, and intermediates used in such processes.
    这项发明通常涉及取代咪唑吡啶化合物,特别是取代的4-(咪唑[1,2-a]吡啶-2-基)苯甲酰胺化合物及其盐。这项发明还涉及包含这种化合物的药物组合物和试剂盒,以及这种化合物的用途(包括治疗方法和药物制剂等),制备这种化合物的方法,以及用于这些方法的中间体。
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐