摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

丙酮 | 67-64-1

中文名称
丙酮
中文别名
二甲酮;2-丙酮;醋酮;二甲基酮;木酮
英文名称
acetone
英文别名
dimethyl ketone;propanone;propan-2-one;2-propanone
丙酮化学式
CAS
67-64-1
化学式
C3H6O
mdl
——
分子量
58.08
InChiKey
CSCPPACGZOOCGX-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 稳定性/保质期:
    1. 无色易挥发易燃的液体,微有香气。丙酮能与乙醇、多元醇、酯、醚、酮、烃、卤代烃等多种极性和非极性溶剂相混溶,是一种典型的溶剂。除棕榈油等少数油类外,几乎所有的油脂都能溶解,并能溶解纤维素、聚甲基丙烯酸醛、聚酯等多种树脂。对环氧树脂溶解能力较差,对聚乙烯呋喃树脂、聚偏二氯乙烯树脂不易溶解。虫胶、橡胶、沥青、石蜡等则难以溶解。本品微有毒性,若蒸气浓度不明或超过暴露极限时,应佩戴合适的呼吸器。丙酮对日光和酸碱不稳定,沸点低,挥发性强。

    2. 丙酮是脂肪族酮类最有代表性的化合物,具有酮类的典型反应。例如,它与亚硫酸氢钠形成无色结晶加成物;与化氢反应生成丙酮氰醇[(CH3)2C(OH)CN];在还原剂作用下生成异丙醇频哪酮;对氧化剂较为稳定,在室温以下不会被硝酸氧化,但用碱性高锰酸钾铬酸等强氧化剂可使其氧化为乙酸甲酸二氧化碳。在碱存在下发生双分子缩合反应,生成双丙酮醇。2摩尔丙酮盐酸氯化锌硫酸等酸性催化剂存在下,生成亚异丙基丙酮,再与1摩尔丙酮加成,生成佛尔酮(二亚异丙基丙酮)。3摩尔丙酮在浓硫酸作用下,脱去3摩尔,生成1,3,5-三甲苯。在石灰、醇氨基钠存在下,缩合生成异佛尔酮(3,5,5-三甲基-2-环己烯-1-酮)。在酸或碱存在下与醛或酮发生缩合反应,生成酮醇、不饱和酮及树脂状物质。与苯酚在酸存在下,缩合成双酚A丙酮的α-氢原子容易被卤素取代生成α-卤代丙酮;与次卤酸或卤素的碱溶液作用生成卤仿。丙酮与Grignard试剂加成反应后解得到叔醇;亦能与及其衍生物羟胺、苯等发生缩合反应。此外,丙酮在500~1000℃时发生热裂化产生乙烯酮;在170~260℃通过-铝催化剂生成异丁烯乙醛;300~350℃时生成异丁烯乙酸等。

    3. 丙酮是易燃有毒物品,毒性中等。轻度中毒对眼及上呼吸道黏膜有刺激作用,重度中毒会出现晕厥、痉挛等症状,并可能出现尿中蛋白和红细胞的现象。小鼠暴露于30~40mg/L或150mg/L的丙酮蒸气中2小时后,分别出现侧卧的中毒症状或致死。人体发生中毒时应立即离开现场,呼吸新鲜空气,严重者需送医抢救。空气中最高容许浓度为1000*10^-6。操作现场应保持良好的通风,并穿戴合适的防护用品。

    4. 丙酮属于低毒类物质,其毒性与乙醇相近。它主要通过中枢神经系统产生麻醉作用,吸入蒸气能引起头痛、眼花和呕吐等症状。空气中的嗅觉界限为3.80mg/m³。频繁接触可导致眼、鼻、舌黏膜炎症。在蒸汽浓度达到9488mg/m³时,在60分钟内会出现头痛、刺激支气管、昏迷等中毒症状;嗅觉阈值在1.2~2.44mg/m³之间。TJ 36-79规定,车间空气中最高容许浓度为360mg/m³。

    5. 稳定性:丙酮稳定 [23]。

    6. 禁配物:强氧化剂、强还原剂和碱。

    7. 聚合危害:不聚合 [25]。

计算性质

  • 辛醇/水分配系数(LogP):
    -0.1
  • 重原子数:
    4
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    17.1
  • 氢给体数:
    0
  • 氢受体数:
    1

ADMET

代谢
评估了CYP2E1在丙酮分解中的作用,方法是测量在大剂量二烯丙基硫醚DAS,一种CYP2E1抑制剂)处理的大鼠不同时间点的丙酮平。研究发现,达到最高血丙酮平和恢复到给药前平的时间随DAS剂量的增加而增加,这表明CYP2E1在丙酮分解中起着重要作用。
... The role of CYP2E1 in acetone catabolism /was assessed/ by measuring acetone levels at different time points in rats that had been treated with diallyl sulfide (DAS, a CYP2E1 inhibitor) at a variety of dose levels. The study noted DAS dose-dependent increases in the time to peak blood acetone level and in the time to return to pre-dose levels, suggesting an important role of CYP2E1 in acetone catabolism.
来源:Hazardous Substances Data Bank (HSDB)
代谢
丙酮是生酮饮食治疗期间升高的主要酮体之一,它具有抗惊厥特性,可能有助于饮食提供的抗惊厥保护。丙酮的抗惊厥机制尚不清楚,但它被代谢为多种生物活性物质,可能发挥作用。在本研究中,对丙酮及其主要代谢物——丙醇1,2-丙二醇甲基乙二醛丙酮酸——在两种小鼠惊厥模型中的抗惊厥活性进行了评估。通过腹膜内给药不同剂量的这些物质,评估它们提高静脉输注戊四唑PTZ)引起的阵挛性惊厥阈值的能力以及对抗通过皮下注射4-氨基吡啶(4-AP)引起的强直性惊厥的保护作用。使用倒置屏幕测试来评估急性神经毒性。丙酮(1-32 mmol/kg,i.p.)以剂量依赖性方式提高了PTZ阈值,并对抗4-AP引起的惊厥(ED(50),26.3 mmol/kg)。在倒置屏幕测试中,丙酮的有效剂量(10-32 mmol/kg)没有引起运动障碍(TD(50),45.7 mmol/kg)。在比丙酮最小有效剂量(3.2 mmol/kg)高10倍的剂量下,代谢物丙醇1,2-丙二醇丙酮酸PTZ模型中无效。在产生运动障碍的高剂量下,丙醇1,2-丙二醇(但不是丙酮酸)确实提高了PTZ阈值。甲基乙二醛既有促惊厥作用也有抗惊厥作用,并且具有显著的毒性,导致呼吸窘迫、运动障碍和死亡。丙酮的代谢物中没有一种能对抗4-AP引起的惊厥。这项研究确认了丙酮的广谱抗惊厥特性,并表明其提供的惊厥保护不太可能来自其主要代谢产物。
Acetone, one of the principal ketone bodies elevated during treatment with the ketogenic diet, exhibits anticonvulsant properties that may contribute to the seizure protection conferred by the diet. The anticonvulsant mechanism of acetone is unknown, but it is metabolized to several bioactive substances that could play a role. Acetone and its major metabolites-acetol, 1,2-propanediol, methylglyoxal, and pyruvic acid-were assessed for anticonvulsant activity in two mouse seizure models. Various doses of the substances administered intraperitoneally were characterized for their ability to elevate the threshold for clonic seizures induced by intravenous infusion of pentylenetetrazol (PTZ) and for protection against tonic seizures induced by subcutaneous bolus administration of 4-aminopyridine (4-AP). The inverted-screen test was used to assess acute neurological toxicity. Acetone (1-32 mmol/kg, i.p.), in a dose-dependent fashion, elevated the PTZ threshold and conferred protection against 4-AP seizures (ED(50), 26.3 mmol/kg). Effective doses of acetone (10-32 mmol/kg) did not cause motor impairment in the inverted-screen test (TD(50), 45.7 mmol/kg). In doses 10-fold greater than the minimally effective dose ofacetone (3.2 mmol/kg), the metabolites acetol, 1,2-propanediol, and pyruvic acid were inactive in the PTZ model. At higher doses that produced motor impairment, acetol and 1,2-propanediol (but not pyruvic acid) did elevate the PTZ threshold. Methylglyoxal had both proconvulsant and anticonvulsant actions, and had substantial toxicity, producing respiratory distress, motor impairment, and death. None of the acetone metabolites protected against 4-AP seizures. This study confirms the broad-spectrum anticonvulsant properties of acetone and indicates that the seizure protection conferred is unlikely to result from its major metabolic products.
来源:Hazardous Substances Data Bank (HSDB)
代谢
有两种途径将丙酮转化为葡萄糖,分别是甲基乙二醛途径和丙二醇途径。甲基乙二醛途径负责将丙酮转化为丙醇丙醇再转化为甲基乙二醛,然后甲基乙二醛最终转化为葡萄糖丙二醇途径涉及通过一种尚未明了的过程将丙醇转化为L-1,2-丙二醇。L-1,2-丙二醇通过醇脱氢酶转化为L-乳酸醛,L-乳酸醛再通过醛脱氢酶转化为L-乳酸。在大鼠中表达这些代谢途径似乎依赖于丙酮诱导的丙酮氧合酶和丙醇单加氧酶。
Two pathways for the conversion of acetone to glucose are proposed, the methylglyoxal & the propanediol pathways. The methylglyoxal pathway is responsible for the conversion to acetol, acetol to methylglyoxal, & subsequent conversion of methylglyoxal to glucose. The propanediol pathway involves the conversion of acetol to L-1,2-propanediol by an as yet unknown process. L-1,2-propanediol is converted to L-lactaldehyde by alcohol dehydrogenase, & L-lactaldehyde is converted to L-lactic acid by aldehyde dehydrogenase. Expression of these metabolic pathways in rat appears to be dependent on the induction of /acetone/ oxygenase & acetol monooxygenase by acetone.
来源:Hazardous Substances Data Bank (HSDB)
代谢
肝脏NAD依赖性醇脱氢酶...这种酶能够催化逆向反应,其中...丙酮...被还原为醇。
Hepatic NAD-dependent alcohol dehydrogenase... enzyme is capable of catalyzing reverse reaction in which... acetone.../is reduced to alcohol/.
来源:Hazardous Substances Data Bank (HSDB)
代谢
乙酮的代谢命运与给药途径无关,涉及三个独立的糖异生途径,最终将碳原子并入葡萄糖和中间代谢的其他产品和底物中,并产生二氧化碳。主要(大量)途径涉及肝脏将乙酮代谢为乙醛,以及肝脏将乙醛代谢为甲基乙二醛,而两个次要(少量)途径部分在肝脏外,涉及将乙醛还原为L-1,2-丙二醇。随后,在微粒体中由乙醛单加氧酶(也称为乙醛羟基酶)催化乙醛转化为甲基乙二醛,这一活性也与细胞色素P-450IIE1相关,并且还需要氧气NADPH。甲基乙二醛可以通过未知的途径转化为D-葡萄糖,或者可能通过糖酵解酶I和II以及谷胱甘肽催化转化为D-乳酸,然后转化为D-葡萄糖。部分外源性乙酮未被代谢,主要随呼出的空气排出,尿液中排出的乙酮很少。(N004)
The metabolic fate of acetone is independent of route of administration and involves three separate gluconeogenic pathways, with ultimate incorporation of carbon atoms into glucose and other products and substrates of intermediary metabolism with generation of carbon dioxide. The primary (major) pathway involves hepatic metabolism of acetone to acetol and hepatic metabolism of acetol to methylglyoxal, while two secondary (minor) pathways are partially extrahepatic, involving the extrahepatic reduction of acetol to L-1,2-propanediol. Subsequent conversion of acetol to methylglyoxal in microsomes is catalyzed by acetol monooxygenase (also called acetol hydroxylase), an activity also associated with cytochrome P-450IIE1, and also requires oxygen and NADPH. Methylglyoxal can then be converted to D-glucose by an unidentified pathway, and/or possibly by catalysis by glyoxalase I and II and glutathione to D-lactate, which is converted to D-glucose. Some of exogenous acetone is unmetabolized and is excreted primarily in the expired air with little acetone excreted in urine. (N004)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
识别和使用:丙酮是一种无色挥发性液体。它是脂肪、油、蜡、树脂、橡胶、塑料、喷漆、清漆、橡胶胶的溶剂。它是有机合成中的一种多用途试剂。丙酮用于制造涂料、塑料、药品和化妆品。它还用于生产其他溶剂和中间体,包括:甲基异丁基酮、间苯氧基氧化物、乙酸(酮烯过程)、双丙酮醇、双酚A甲基丙烯酸甲酯、炸药、人造丝、摄影胶片、异戊二烯丙酮目前在美国没有注册使用,但批准的农药用途可能会定期更改,因此必须咨询联邦、州和地方当局以获取当前批准的用途。丙酮已被确定为在液压破碎中作为腐蚀抑制剂使用。人类暴露和毒性:丙酮相对于许多其他工业溶剂来说毒性较小;然而,在高浓度下,丙酮蒸汽可能导致中枢神经系统抑制、心肺衰竭和死亡。在儿童中,2到3毫升/千克被认为是毒性的。人类暴露于大气浓度的急性报告称没有产生明显的毒性效应或只有轻微的暂时性效应,如眼部刺激。报告称,暴露于丙酮蒸汽浓度约4小时的工作人员出现了更严重的暂时性效应(包括呕吐和晕厥)。急性暴露于丙酮也被报告会改变人类在神经行为测试中的表现。报告称,女性出现月经不调。丙酮也作为血液、尿液和人类呼吸的代谢成分出现。丙酮是体内自然存在的三种酮体之一。它可以在哺乳动物体内通过脂肪酸氧化内源性地形成。禁食、糖尿病和剧烈运动会增加丙酮的内源生成。在正常条件下,酮体的产生几乎完全在肝脏内进行,肺和肾脏也有较小的产生。产物在血液中排出并通过血液输送到体内的所有组织和器官,在那里它们可以作为能量来源。动物研究:成年大鼠口服LD50值在5800-7138毫克/千克之间。雌性小鼠通过饮用给予2500、5000、10000、20000或50000 ppm丙酮,雄性小鼠给予1250、2500、5000、10000或20000 ppm丙酮,持续13周。在雌性(50000 ppm)中,绝对肝重量和肝重量与体重比例显著增加,而绝对脾重量和脾重量与体重比例显著降低。在其他实验中,大鼠在饮用中处理丙酮28天后评估肝脏氧化平衡和脂质含量。与对照相比,丙酮处理的大鼠肝GSH、肝维生素E、血糖、胆固醇和肝脂肪增加,这与非酒精性脂肪肝炎的特征相似。丙酮被认为不具有遗传毒性或致突变性。在一项研究中,怀孕大鼠和小鼠在妊娠第6-19天暴露于丙酮蒸汽,观察到轻微的发育毒性。其他关于丙酮的生殖效应的报告包括在大鼠中观察到对睾丸的影响和精子质量的变化。丙酮已广泛用作皮肤致癌性研究中的溶剂载体,并且认为当应用于皮肤时不具有致癌性。研究了雌性大鼠在10天内每天4小时暴露于3000、6000、12000或16000 ppm丙酮蒸汽后的避免和逃避行为。3000 ppm暴露在所有暴露日都没有影响,6000 ppm暴露最初抑制了条件性避免反应但没有抑制非条件性逃避反应,而两个最高暴露抑制了两种反应。在暴露于6000和12000 ppm三天后获得了正常反应,这表明在重复暴露后会发生适应性变化。生态毒性研究:丙酮用绿头鸭蛋进行了测试。将受精蛋在室温下孵化第3天或第8天时浸入0、10或100%丙酮30秒。10%丙酮没有显著影响;然而,100%丙酮对两组暴露的存活率、胚胎重量和胚胎长度都造成了显著下降。目前尚不清楚死亡是由于丙酮的毒性还是其溶剂能力造成的。
IDENTIFICATION AND USE: Acetone is a colorless volatile liquid. It is a solvent for fats, oils, waxes, resins, rubber, plastics, lacquers, varnishes, rubber cements. It is a versatile reagent in organic synthesis. Acetone is used in manufacturing of coatings, plastics, pharmaceuticals and cosmetics. It is also used in production of other solvents and intermediates including: methyl isobutyl ketone, mesityl oxide, acetic acid (ketene process), diacetone alcohol, bisphenol A, methyl methacrylate, explosives, rayon, photographic films, isoprene. Acetone is not registered for current use in the U.S., but approved pesticide uses may change periodically and so federal, state and local authorities must be consulted for currently approved uses. Acetone has been identified as being used in hydraulic fracturing as a corrosion inhibitor. HUMAN EXPOSURE AND TOXICITY: Acetone is relatively less toxic than many other industrial solvents; however, at high concentrations, acetone vapor can cause CNS depression, cardiorespiratory failure and death. In children 2 to 3 mL/kg is considered to be toxic. Acute exposures of humans to atmospheric concentrations have been reported to produce either no gross toxic effects or minor transient effects, such as eye irritation. More severe transient effects (including vomiting and fainting) were reported for workers exposed to acetone vapor concentrations for about 4 hr. Acute exposures to acetone have also been reported to alter performances in neurobehavioral tests in humans. Females were reported to suffer menstrual irregularities. Acetone also occurs as a metabolic component in blood, urine and human breath. Acetone is one of three ketone bodies that occur naturally throughout the body. It can be formed endogenously in the mammalian body from fatty acid oxidation. Fasting, diabetes mellitus and strenuous exercise increase endogenous generation of acetone. Under normal conditions, the production of ketone bodies occurs almost entirely within the liver and to a smaller extent in the lung and kidney. Products are excreted in the blood and transported to all tissues and organs of the body where they can be used as a source of energy. ANIMAL STUDIES: Oral LD50 values in adult rats are in the range of 5800-7138 mg/kg. Mice were given 2,500, 5,000, 10,000, 20,000, or 50,000 ppm acetone (females) and 1,250, 2,500, 5,000, 10,000, or 20,000 ppm acetone (males) via drinking water for 13 weeks. Absolute liver weight and liver weight to body weight ratios were significantly increased and absolute spleen weight and spleen weight to body weight ratios were significantly decreased in the females (50,000 ppm). In other experiments, rats were assessed for liver oxidative balance and lipid content after treatments with acetone in water for 28 days. Compared with controls, acetone-treated rats had increased hepatic GSH, hepatic vitamin E, glycemia, cholesterolemia, and hepatic fat, which is similar to the features of non-alcoholic steatohepatitis. Acetone is not considered to be genotoxic or mutagenic. In a study of pregnant rats and mice exposed to acetone vapor during days 6-19 of gestation, slight developmental toxicity was observed. Reports of other reproductive effects of acetone include observations of testicular effects and changes of sperm quality in rats. Acetone has been used extensively as a solvent vehicle in skin carcinogenicity studies and is not considered carcinogenic when applied to the skin. The avoidance and escape behavior of female rats exposed to 3000, 6000, 12,000, or 16,000 ppm of acetone vapors for 10 days for 4 hr/day were studied. The 3000 ppm exposures had no effect on all exposure days, the 6000 ppm exposure initially inhibited the conditioned avoidance response but not the unconditioned escape response, and the two highest exposures inhibited both responses. Normal responses were obtained after three days of exposure to 6000 and 12,000 ppm, indicating that adaptive changes develop upon repeated exposure. ECOTOXICITY STUDIES: Acetone was tested with mallard eggs. Fertile eggs were immersed in 0, 10 or 100% acetone for 30 seconds at room temperature on days 3 or 8 of incubation. There were no significant effects with 10% acetone; however, 100% acetone caused a significant decrease in survival, embryonic weight and embryonic length for both exposure groups. It is unknown whether the mortality was due to the toxicity of acetone or to its solvent capabilities.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
由于丙酮的高度溶性,它容易被血液吸收并广泛分布到身体组织中。丙酮可能会干扰细胞膜的组成,改变其对离子的渗透性。在全身范围内,丙酮对肝脏有中等毒性,并产生血液学效应。肾脏毒性可能是由于代谢物甲酸,已知甲酸对肾脏有毒,并通过肾脏排泄。丙酮的主要效应之一是增强其他化学物质的毒性。研究表明,预先接触丙酮可以增强四氯化碳氯仿对肝脏和肾脏的毒性,通过诱导特定形式的细胞色素P-450,特别是细胞色素P-450IIE1,以及相关的酶活性。(N004)
Since acetone is highly water soluble, it is readily taken up by the blood and widely distributed to body tissues. Acetone may interfere with the composition of the membranes, altering their permeability to ions. Systemically, acetone is moderately toxic to the liver and produces hematological effects. The renal toxicity may be due to the metabolite, formate, which is known to be nephrotoxic and is excreted by the kidneys. One of the major effects of acetone is the potentiation of the toxicity of other chemicals. Pretreatment with acetone has been shown to potentiate the hepatotoxicity and nephrotoxicity of carbon tetrachloride and chloroform by inducing particular forms of cytochrome P-450, especially cytochrome P-45OIIE1, and associated enzyme activities. (N004)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌性证据
癌症分类:D组 不可归类为人类致癌性
Cancer Classification: Group D Not Classifiable as to Human Carcinogenicity
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
分类:D;无法归类为人类致癌性。分类依据:基于缺乏关于人类或动物致癌性的数据。人类致癌性数据:无。动物致癌性数据:无。
CLASSIFICATION: D; not classifiable as to human carcinogenicity. BASIS FOR CLASSIFICATION: Based on lack of data concerning carcinogenicity in humans or animals. HUMAN CARCINOGENICITY DATA: None. ANIMAL CARCINOGENICITY DATA: None.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
A4;不可归类为人类致癌物。
A4; Not classifiable as a human carcinogen.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
在大鼠连续11天饮用含丙酮(7.5% v/v)后,第1天的血浆丙酮浓度在315-800微克/毫升范围内。到第4天,血浆浓度似乎稳定在大约1,200微克/毫升。
In rats receiving acetone in drinking water (7.5% v/v) for 11 consecutive days, plasma concentrations of acetone on day 1 were in the range of 315-800 ug/mL. The plasma concentration appeared to plateau at about 1,200 ug/mL by day 4.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
基于生理的毒物动力学(PBTK)模型对人类实验数据的研究表明,同时描述吸入极性溶剂在血液和呼吸中的时间过程存在困难,尤其是在身体锻炼期间暴露时。我们将此归因于气道中的洗入-洗出效应。目标是开发一个PBTK模型,解释在不同体育锻炼平下血液中和呼出空气中的丙酮的行为。该模型包括通过粘膜将吸入溶剂蒸气与血流交换,并设有单独的室来描述工作和休息肌肉。开发的模型与传统的PBTK模型进行了对比,后者将传导气道视为一个惰性管。我们的模型预测与26次吸入实验的结果一致,这些实验是在0、50、100和150瓦工作负荷下对18名志愿者进行的,实验观察到了动脉血中和末端及混合呼出空气中的丙酮平。相比之下,惰性管模型无法描述这些数据。据我们所知,开发的模型是第一个解释了在不同体育锻炼平下丙酮毒物动力学的模型。它可能对呼吸监测有用,并且可以更准确地估计吸入极性挥发性物质时的吸收剂量。
Physiologically based toxicokinetic (PBTK) modeling of human experimental data suggests difficulties to simultaneously describe the time courses of inhaled polar solvents in blood and breath, especially if exposures occur during physical exercise. We attribute this to the washin-washout effect in the airways. The aim was to develop a PBTK-model that explains the behavior of acetone in blood and exhaled air at different levels of physical exercise. The model includes exchange of inhaled solvent vapor with the blood flow via the mucosa and separate compartments to describe working and resting muscles. The developed model was contrasted to a traditional PBTK-model where the conducting airways were regarded as an inert tube. Our model predictions agrees well with experimentally observed acetone levels in both arterial blood and end- and mixed-exhaled air from 26 inhalation experiments conducted with 18 human volunteers at 0, 50, 100 and 150 W workload. In contrast, the inert-tube model was unable to describe the data. The developed model is to our knowledge the first which explains the toxicokinetics of acetone at such various levels of physical exercise. It may be useful in breath monitoring and to obtain more accurate estimates of absorbed dose during inhalation of polar volatiles.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
严重糖尿病酮症酸中毒患者的血浆丙酮平可高达750毫克/升,这是正常上限的300倍。
Patients with severe diabetic ketoacidosis can have plasma acetone levels as high as 750 mg/L, which is up to 300 times the normal limit.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
丙酮是最不危害的工业溶剂之一,但挥发性极高,可能会被大量吸入。它可以通过肺部进入血液并在全身扩散。少量丙酮可以通过皮肤吸收。
Acetone is one of the least hazardous industrial solvents, but is highly volatile and may be inhaled in large quantities. It may be absorbed into the blood through the lungs and diffused throughout the body. Small quantities may be absorbed through the skin.
来源:Hazardous Substances Data Bank (HSDB)

制备方法与用途

根据提供的信息,丙酮的主要用途包括:

  1. 作为溶剂

    • 在涂料、清漆、硝基喷漆中用作溶剂。
    • 用于纤维素醋酸纤维素、照相胶片等的制造过程中的溶剂和脱漆剂。
    • 能萃取各种维生素与激素及石油脱蜡。
  2. 作为化工原料

  3. 在特定行业中的应用

  4. 在分析与实验用途

  5. 其他应用领域

总结来说,丙酮是一种多功能化学品,在多个行业中有广泛的应用。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    膦与酮的反应:生成初级氧化膦的途径
    摘要:
    审查了膦与羰基化合物反应的早期工作,并提供了有关膦与酮反应的新信息。伯膦氧化物(X)和1-羟基仲膦氧化物(XI)在强酸性介质中形成,两种产物的比例由空间因素决定;前者以受阻酮为主。伯膦氧化物是一类新的化合物。它们在浓缩状态下具有有限的热稳定性,但是在溶液中足够稳定以用作中间体。讨论了该膦和羰基膦反应中氧转移步骤的机理。
    DOI:
    10.1016/0040-4020(62)80002-7
  • 作为产物:
    描述:
    2,4-二甲基-3-戊酮Rh(ttp)Me三苯基膦 作用下, 以 neat (no solvent) 为溶剂, 反应 8.0h, 生成 丙酮
    参考文献:
    名称:
    铑(III)卟啉对水的光催化碳-碳σ键厌氧氧化酮
    摘要:
    使用铑(III)卟啉催化剂完成了水对未应变酮的光催化碳-碳σ键氧化反应。催化产生具有α取代基的脂族和环状酮中相应的无碳的一碳羰基化合物和H 2,具有高达30个转换率。在芳族酮中未观察到碳损失。机理研究表明,(Ph 3 P)Rh III(ttp)OH(ttp =四甲苯基卟啉二价阴离子)是碳-碳σ键厌氧氧化的关键中间体。
    DOI:
    10.1021/om400672t
  • 作为试剂:
    描述:
    吡啶N-碘代丁二酰亚胺一水合肼溶剂黄146丙酮 作用下, 以 二氯甲烷 为溶剂, 反应 3.5h, 生成 2,3,6-o-tribenzyl-D-galactopyranosyl-2-(1-phenylvinyl) benzoate 、 2,3,6-o-tribenzyl-D-galactopyranosyl-2-(1-phenylvinyl) benzoate
    参考文献:
    名称:
    模块化和一锅立体选择性糖基化策略全合成紫芝多糖九十糖基序
    摘要:
    来自药用真菌灵芝的多糖代表了治疗多种疾病的重要辅助治疗剂,包括白细胞减少症和造血损伤。然而,从灵芝多糖中合成长的、支链的、复杂的碳水化合物链仍然是化学合成中的一项具有挑战性的任务。在此,我们首次报道了以糖基原-(1-苯乙烯基)苯甲酸酯为基础,通过一锅立体选择性糖基化策略,从灵芝多糖GSPB70-S中模块化化学合成了具有多种生物活性的九十糖基序。不仅加速了碳水化合物的合成,还减少了化学废物,并避免了基于硫代糖苷的一锅糖基化固有的糖苷配基转移问题。该合成路线还强调了以下关键步骤:(1)基于预激活的一锅糖基化,用于高度立体选择性构建多个1,2-顺式糖苷键,包括三个α- d -GlcN-(1→4)键和一个α- d -Gal-(1→4)键通过试剂N-甲基-N-苯基甲酰胺调节; (2)通过糖基N-苯基三氟乙酰亚胺酯、糖基邻炔基苯甲酸酯和糖基邻-(1-苯基乙烯基)苯甲酸酯的策略组合,在各种直链和支链聚糖片段中正交一锅组装1
    DOI:
    10.1021/jacs.4c05188
点击查看最新优质反应信息

文献信息

  • Organocatalyzed Kabbe condensation reaction for mild and expeditious synthesis of 2,2‐dialkyl and 2‐spiro‐4‐chromanones
    作者:Naval P. Kapuriya、Jasmin J. Bhalodia、Mrunal A. Ambasana、Rashmi B. Patel、Atul H. Bapodra
    DOI:10.1002/jhet.4054
    日期:——
    An expeditious Kabbe condensation reaction for the synthesis of 2,2‐dialkyl and 2‐spiro‐chroman‐4(1H)‐ones has been developed using pyrrolidine‐butanoic acid in DMSO as bifunctional organocatalyst. Unlike existing methods, this reaction proceeds at room temperature with high yields, rendering it an attractive method to synthesize a vast variety of privileged 4‐chromones.
    使用吡咯烷-丁酸DMSO中作为双功能有机催化剂,已经开发了一种快速的Kabbe缩合反应,用于合成2,2-二烷基和2-spiro-chroman-4(1 H)-酮。与现有方法不同,该反应在室温下以高收率进行,这使其成为合成各种特有的4-色酮的有吸引力的方法。
  • Method development for the determination of 1,1-dimethylhydrazine by the high-performance liquid chromatography–mass spectrometry technique
    作者:Igors Susinskis、Peteris Mekss、Juris Hmelnickis
    DOI:10.1177/1469066718761437
    日期:2018.8
    Unsymmetrical dimethyl hydrazine is highly toxic, carcinogenic compound, widely used for organic synthesis and drug development. Therefore, due to its high reactivity, direct analysis is problematic. Current study proposes to use derivatization reaction to increase selectivity and sensitivity of high-performance liquid chromatography–mass spectrometry method. Different derivatization agents were tested
    不对称二甲基是一种剧毒、致癌的化合物,广泛用于有机合成和药物开发。因此,由于其高反应性,直接分析是有问题的。目前的研究建议使用衍生化反应来提高高效液相色谱-质谱法的选择性和灵敏度。测试了不同的衍生剂并找到了最佳反应介质。通过使用少量试剂来进行衍生化以降低分析成本。对该方法进行了全面验证,可用于药物分析中的常规控制。方法灵敏度为 0.15 ppm,线性范围为 0.15–2.70 ppm。
  • Pd-catalyzed carbonylative access to aroyl phosphonates from (hetero)aryl bromides
    作者:Zhong Lian、Hongfei Yin、Stig D. Friis、Troels Skrydstrup
    DOI:10.1039/c5cc02085a
    日期:——

    This first carbonylative coupling employing a phosphorus-based nucleophile provides easy and safe access to acyl phosphonates under mild conditions.

    这种首次使用基亲核试剂的羰基化偶联反应在温和条件下提供了对酰基膦酸酯的简便安全访问。
  • [EN] IMIDAZOLE DERIVATIVES USEFUL AS INHIBITORS OF FAAH<br/>[FR] DÉRIVÉS IMIDAZOLE UTILES COMME INHIBITEURS DE LA FAAH
    申请人:MERCK & CO INC
    公开号:WO2009152025A1
    公开(公告)日:2009-12-17
    The present invention is directed to certain imidazole derivatives which are useful as inhibitors of Fatty Acid Amide Hydrolase (FAAH). The invention is also concerned with pharmaceutical formulations comprising these compounds as active ingredients and the use of the compounds and their formulations in the treatment of certain disorders, including osteoarthritis, rheumatoid arthritis, diabetic neuropathy, postherpetic neuralgia, skeletomuscular pain, and fibromyalgia, as well as acute pain, migraine, sleep disorder, Alzeimer Disease, and Parkinson's Disease.
    本发明涉及某些咪唑生物,其可用作脂肪酰胺解酶(FAAH)的抑制剂。该发明还涉及包含这些化合物作为活性成分的药物配方,以及这些化合物及其配方在治疗某些疾病中的使用,包括骨关节炎、类风湿性关节炎、糖尿病性神经病、带状疱疹后神经痛、骨骼肌肉疼痛和纤维肌痛,以及急性疼痛、偏头痛、睡眠障碍、阿尔茨海默病和帕森病。
  • Preparation of functionalized cyclobutenones and phenolic compounds from α-diazo β-ketophosphonates
    作者:Rindra Andriamiadanarivo、Bernard Pujol、Bernard Chantegrel、Christian Deshayes、Alain Doutheau
    DOI:10.1016/s0040-4039(00)61512-5
    日期:1993.12
    When heated in refluxing benzene or toluene, α-diazo β-ketophosphonates 2, prepared in three steps from aldehydes or ketones, gave rise to functionalized cyclobutenones 4 or phenolic compounds 5. These products are formed by electrocyclisation respectively of a vinyl or dienylketene, resulting from a Wolff rearrangement.
    当在回流的苯或甲苯中加热时,由醛或酮分三步制备的α-重氮β-酮膦酸酯2生成官能化的环丁烯酮4或酚类化合物5。这些产物是由沃尔夫夫重排分别通过乙烯基或二烯基烯酮的电环化而形成的。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
cnmr
ir
raman
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台