New cryptands including bis-azacrown and saccharidic moieties in their structure were prepared in several steps by applying Staudinger-aza-Wittig reaction (SAW). Syntheses have been started from cheap, easily available commercial compounds such as D-glucose, D-cellobiose and D-lactose subsequently transformed into their derivatives in fairly good yields (60-65%) and suitable to give desired final cryptands by direct SAW coupling reactions. (C) 2015 Elsevier Ltd. All rights reserved.
New cryptands including bis-azacrown and saccharidic moieties in their structure were prepared in several steps by applying Staudinger-aza-Wittig reaction (SAW). Syntheses have been started from cheap, easily available commercial compounds such as D-glucose, D-cellobiose and D-lactose subsequently transformed into their derivatives in fairly good yields (60-65%) and suitable to give desired final cryptands by direct SAW coupling reactions. (C) 2015 Elsevier Ltd. All rights reserved.
New cryptands including bis-azacrown and saccharidic moieties in their structure were prepared in several steps by applying Staudinger-aza-Wittig reaction (SAW). Syntheses have been started from cheap, easily available commercial compounds such as D-glucose, D-cellobiose and D-lactose subsequently transformed into their derivatives in fairly good yields (60-65%) and suitable to give desired final cryptands by direct SAW coupling reactions. (C) 2015 Elsevier Ltd. All rights reserved.