Glycosidation of lupane-type triterpenoids as potent in vitro cytotoxic agents
摘要:
The weak hydrosolubility of betulinic acid (3) hampers the clinical development of this natural anticancer agent. In order to circumvent this problem and to enhance the pharmacological properties of betulinic acid (3) and the lupane-type triterpenes lupeol (1), betulin (2), and methyl betulinate (7), glycosides (beta-D-glucosides, alpha-L-rhamnosides, and alpha-D-arabinosides) were synthesized and in vitro tested for cytotoxicity against three cancerous (A-549, DLD-1, and B16-F1) and one healthy (WS1) cell lines. The addition of a sugar moiety at the C-3 or C-28 position of betulin (2) resulted in a loss of cytotoxicity. In contrast, the 3-O-beta-D-glucosidation of lupeol (1) improved the activity by 7- to 12-fold (IC50 14-15.0 mu M). Moreover, the results showed that cancer cell lines are 8- to 12-fold more sensitive to the 3-O-alpha-L-rhamnopyranoside derivative of betulinic acid (IC50 2.6-3.9 mu M, 22) than the healthy cells (IC50 31 mu M). Thus, this study indicates that 3-O-glycosides of lupane-type triterpenoids represent an interesting class of potent in vitro cytotoxic agents. (c) 2006 Elsevier Ltd. All rights reserved.
triterpenes betulin (1) and betulinicacid (2), respectively. The medical uses of betulinicacid (2) and its derivatives are limited because of their poor hydrosolubility and pharmacokinetics properties. In order to overcome this major problem, we synthesized and studied the in vitro anticanceractivity of a series of 3beta-O-monodesmosidic saponins derived from betulin (14-16), betulinicacid (20-22)