Synthesis of Citronellal by RhI-Catalysed Asymmetric Isomerization ofN,N-Diethyl-Substituted Geranyl- and Nerylamines or Geraniol and Nerol in the Presence of Chiral Diphosphino Ligands, under Homogeneous and Supported Conditions
摘要:
For the asymmetric isomerization of geranyl- or neryldiethylamine ((E)- or (Z)-1, resp.) and allyl alcohols geraniol or nerol ((E)- or (Z)-2, resp.) to citronellal (4) in the presence of a [Rh-1(ligand)cydoocta-1,5-diene)](+) catalyst, the atropic ligands 5-11 are compared under homogeneous and polymer-supported conditions with the non-C-2-symmetrical diphosphino ferrocene ligands 12-16. The Bu-t-josiphos ligand 13 or daniphos ligand 19, available in both antipodal series, already catalyse the reaction of (E)-1 at 20 degrees (97% e.e.) and favourably compare with the binap ligand 5 (see Table I). Silica-gel- or polymer-supported diphosphino ligands usually afford similar selectivity as compared to the corresponding ligands applied under homogeneous conditions, but are generally less reactive. In this context, a polymer-supported ligand of interest is the polymer-anchored binap (R)-6, in terms of reactivity, selectivity, and recoverability, with a turnover of more than 14400.
Sulfonic peracids — III. Heteroatom oxidation and chemoselectivity
作者:R. Kluge、M. Schulz、S. Liebsch
DOI:10.1016/0040-4020(96)00202-5
日期:1996.4
investigated thep-toluenesulfonic peracid (2) generated in situ in the oxidation of different types of compounds containing nitrogen and/or sulfur. The sulfonic peracid2 shows a remarkable chemoselectivity characterized by a preferred oxidation of sulfides to the sulfones in the presence of amines or olefins and a strong dependence on the nature of the amine in the competitive oxidation of olefins and amines.
Rhodium‐Catalyzed Asymmetric Synthesis of β‐Branched Amides
作者:Zhao Wu、Joshua D. Laffoon、Trang T. Nguyen、Jacob D. McAlpin、Kami L. Hull
DOI:10.1002/anie.201610500
日期:2017.1.24
synthesis of chiral β‐branched amides is reported through the highly enantioselective isomerization of allylamines, followed by enamine exchange, and subsequent oxidation. The enamine exchange allows for a rapid and modular synthesis of various amides, including challenging β‐diaryl and β‐cyclic.
USES OF CERTAIN PLATINOID ACCUMULATING PLANTS FOR USE IN ORGANIC CHEMICAL REACTIONS
申请人:CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
公开号:US20160159934A1
公开(公告)日:2016-06-09
A composition derived from the acid treatment of ashes obtained after heat treatment of selected plants or plant material is provided. The selected plants accumulate metal from the platinum group (platinoids). The compositions can be used to produce catalysts for performing various organic synthesis reactions.
Utilisation de complexes de Rh(I) du type [Rh(diphosphine) (diene)]ClO 4 et [Rh(diphosphine)(S) 4 ]ClO 4 (diphosphine: diphosphine tertiaire chelatant-cis; diene=cyclooctadiene ou norbornadiene; S=solvant). Ces composes sont des catalyseurs actifs de la migration d'hydrogene dans les allylamines secondaires et tertiaires pour donner les (E)-enamines et imines correspondants
[Rh(diphosphine) (diene)]ClO 4 et [Rh(diphosphine)(S) 4 ]ClO 4 (diphosphine: diphosphine tertiaire chelatant-cis; diene=cyclooctadiene ou norbornadiene; S =溶剂)。Ces 组成sont des catalyseurs actifs de la migration d'hydrogene dans les allylamines secondaires et tertiaires pour donner les (E)-enamines et 亚胺通讯员
Catalytic Asymmetric Hydrogen Migration of Allylamines
作者:Sei Otsuka、Kazuhide Tani
DOI:10.1055/s-1991-26541
日期:——
This review describes some preparative aspects and practical applications of BINAP-Rh(I) catalyzed enantioselective isomerization of prochiral allylamines recently developed through the joint effort of several groups in Japan. In addition, the novel, sophisticated reaction mechanisms are discussed. 1. Introduction 2. Catalyst Development 2.1. Cobalt Catalysts 2.2. Rhodium Catalysts 2.3. The Ligand BINAP 3. Preparative Aspects 3.1. Isomerization on a Laboratory Scale 3.2. The Industrial Process 4. Substrates and the Scope 4.1. Allylamine 4.2. Allyl Alcohol 5. Reaction Mechanisms 5.1. Catalytic Pathways 5.2. Mechanism of Chiral Recognition 5.3. Conclusion 6. Applications 6.1. (-)-Menthol 6.2. Citronellol 6.3. Citronellal Derivatives 6.4. α-Tocopherol Side Chain 6.5. Methoprene