摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,1-二苯-2-苦基肼 | 1898-66-4

中文名称
1,1-二苯-2-苦基肼
中文别名
2,2-联苯基-1-苦基肼基;1,1-二苯基-2-苦基肼自由基;2,2-联苯基-1-苦基肼基(freeradical);2,2-二苯基-1-苦基肼;1,1-二苯基-2-苦肼基自由基;A,A二苯基Β苦基肼基游离基;1,1-二苯基-2-苦基肼
英文名称
DPPH
英文别名
2,2-diphenyl-1-picrylhydrazyl;1,1-diphenyl-2-picrylhydrazyl;1,1-diphenyl-2-picrylhydrazyl radical;2,2-diphenyl-1-picrylhydrazyl radical
1,1-二苯-2-苦基肼化学式
CAS
1898-66-4
化学式
C18H14N5O6
mdl
——
分子量
396.339
InChiKey
HHEAADYXPMHMCT-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    ~135 °C (dec.)(lit.)
  • 密度:
    1.484 g/cm3
  • 溶解度:
    乙腈(微溶)、氯仿(微溶)、DMSO(微溶)、甲醇(微溶)
  • 最大波长(λmax):
    515nm(MeOH)(lit.)
  • 稳定性/保质期:
    如果按照规定使用和存储,则不会分解,没有已知的危险反应,请避免接触氧化物。

计算性质

  • 辛醇/水分配系数(LogP):
    5.5
  • 重原子数:
    29
  • 可旋转键数:
    4
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    142
  • 氢给体数:
    0
  • 氢受体数:
    7

安全信息

  • TSCA:
    Yes
  • 危险等级:
    6.1
  • 危险品标志:
    Xn
  • 安全说明:
    S24/25
  • 危险类别码:
    R20/21/22,R42/43
  • WGK Germany:
    1
  • 海关编码:
    29280000
  • 危险品运输编号:
    UN2811
  • 危险类别:
    6.1
  • 包装等级:
    II
  • 危险标志:
    GHS08
  • 危险性描述:
    H317,H334
  • 危险性防范说明:
    P261,P280,P342 + P311
  • 储存条件:
    密封,在2°C至-8°C下保存

SDS

SDS:45c6fee93d7342bb19f58f989604854e
查看
Name: 2 2-Diphenyl-1-Picrylhydrazyl 97% (UV-Vis) Material Safety Data Sheet
Synonym: Hydrazyl, 2,2-Diphenyl-1-(2,4,6-Trinitrophenyl
CAS: 1898-66-4
Section 1 - Chemical Product MSDS Name:2 2-Diphenyl-1-Picrylhydrazyl 97% (UV-Vis) Material Safety Data Sheet
Synonym:Hydrazyl, 2,2-Diphenyl-1-(2,4,6-Trinitrophenyl

Section 2 - COMPOSITION, INFORMATION ON INGREDIENTS
CAS# Chemical Name content EINECS#
1898-66-4 Hydrazyl, 2,2-Diphenyl-1-(2,4,6-Trinit 97 217-591-8
Hazard Symbols: XN
Risk Phrases: 20/21/22

Section 3 - HAZARDS IDENTIFICATION
EMERGENCY OVERVIEW
Harmful by inhalation, in contact with skin and if swallowed.The toxicological properties of this material have not been fully investigated.
Potential Health Effects
Eye:
May cause eye irritation.
Skin:
May cause skin irritation.
Ingestion:
May cause irritation of the digestive tract. The toxicological properties of this substance have not been fully investigated.
Inhalation:
May cause respiratory tract irritation. The toxicological properties of this substance have not been fully investigated.
Chronic:
No information found.

Section 4 - FIRST AID MEASURES
Eyes: Flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical aid.
Skin:
Get medical aid. Flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse.
Ingestion:
Get medical aid. Do NOT induce vomiting. If conscious and alert, rinse mouth and drink 2-4 cupfuls of milk or water.
Inhalation:
Remove from exposure and move to fresh air immediately. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical aid.
Notes to Physician:

Section 5 - FIRE FIGHTING MEASURES
General Information:
As in any fire, wear a self-contained breathing apparatus in pressure-demand, MSHA/NIOSH (approved or equivalent), and full protective gear. During a fire, irritating and highly toxic gases may be generated by thermal decomposition or combustion.
Extinguishing Media:
Use agent most appropriate to extinguish fire. Use water spray, dry chemical, carbon dioxide, or appropriate foam.

Section 6 - ACCIDENTAL RELEASE MEASURES
General Information: Use proper personal protective equipment as indicated in Section 8.
Spills/Leaks:
Vacuum or sweep up material and place into a suitable disposal container. Clean up spills immediately, observing precautions in the Protective Equipment section. Avoid generating dusty conditions.
Provide ventilation.

Section 7 - HANDLING and STORAGE
Handling:
Wash thoroughly after handling. Remove contaminated clothing and wash before reuse. Use with adequate ventilation. Minimize dust generation and accumulation. Avoid contact with eyes, skin, and clothing. Keep container tightly closed. Avoid ingestion and inhalation.
Storage:
Store in a tightly closed container. Store in a cool, dry, well-ventilated area away from incompatible substances.

Section 8 - EXPOSURE CONTROLS, PERSONAL PROTECTION
Engineering Controls:
Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower. Use adequate ventilation to keep airborne concentrations low.
Exposure Limits CAS# 1898-66-4: Personal Protective Equipment Eyes: Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166.
Skin:
Wear appropriate protective gloves to prevent skin exposure.
Clothing:
Wear appropriate protective clothing to prevent skin exposure.
Respirators:
A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements or European Standard EN 149 must be followed whenever workplace conditions warrant respirator use.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

Physical State: Crystalline powder
Color: black - gold
Odor: Not available.
pH: Not available.
Vapor Pressure: Not available.
Viscosity: Not available.
Boiling Point: Not available.
Freezing/Melting Point: 125 deg C
Autoignition Temperature: Not applicable.
Flash Point: Not applicable.
Explosion Limits, lower: Not available.
Explosion Limits, upper: Not available.
Decomposition Temperature:
Solubility in water:
Specific Gravity/Density:
Molecular Formula: C18H12N5O6
Molecular Weight: 394.32

Section 10 - STABILITY AND REACTIVITY
Chemical Stability:
Stable under normal temperatures and pressures.
Conditions to Avoid:
Incompatible materials, dust generation, excess heat, strong oxidants.
Incompatibilities with Other Materials:
Oxidizing agents, strong bases.
Hazardous Decomposition Products:
Nitrogen oxides, carbon monoxide, irritating and toxic fumes and gases, carbon dioxide.
Hazardous Polymerization: Has not been reported

Section 11 - TOXICOLOGICAL INFORMATION
RTECS#:
CAS# 1898-66-4: MW3250000 LD50/LC50:
Not available.
Carcinogenicity:
Hydrazyl, 2,2-Diphenyl-1-(2,4,6-Trinitrophenyl) - Not listed by ACGIH, IARC, or NTP.
Other:
See actual entry in RTECS for complete information.

Section 12 - ECOLOGICAL INFORMATION


Section 13 - DISPOSAL CONSIDERATIONS
Dispose of in a manner consistent with federal, state, and local regulations.

Section 14 - TRANSPORT INFORMATION

IATA
Not regulated as a hazardous material.
IMO
Not regulated as a hazardous material.
RID/ADR
Not regulated as a hazardous material.

Section 15 - REGULATORY INFORMATION

European/International Regulations
European Labeling in Accordance with EC Directives
Hazard Symbols: XN
Risk Phrases:
R 20/21/22 Harmful by inhalation, in contact with
skin and if swallowed.
Safety Phrases:
S 24/25 Avoid contact with skin and eyes.
S 28A After contact with skin, wash immediately with
plenty of water.
S 37 Wear suitable gloves.
S 45 In case of accident or if you feel unwell, seek
medical advice immediately (show the label where
possible).
WGK (Water Danger/Protection)
CAS# 1898-66-4: No information available.
Canada
CAS# 1898-66-4 is listed on Canada's NDSL List.
CAS# 1898-66-4 is not listed on Canada's Ingredient Disclosure List.
US FEDERAL
TSCA
CAS# 1898-66-4 is listed on the TSCA inventory.


SECTION 16 - ADDITIONAL INFORMATION
N/A

制备方法与用途

应用 A,A二苯基β苦基肼基游离基(DPPH自由基)是一种有机肼化合物,可用作化学试剂。在特定波长下测定DPPH与抗氧化物质反应前后吸收值的变化可定量测定被测物质的抗氧化能力。DPPH法是测定茶等抗氧化性能的一种快速简便的方法,若测定条件掌握得当,可以获得较好的测定稳定性。

生物活性 DPPH(2,2-二苯基-1-苦基肼基)是一种稳定的自由基,可用于测量抗氧化剂的自由基清除活性。DPPH中的氮原子通过从抗氧化剂吸收氢原子而还原为相应的肼。该方法适用于水性和非极性有机溶剂中,并可用于检查亲水性和亲脂性抗氧化剂。

体外研究 DPPH在517 nm处具有强烈的吸收带,由于其奇数电子,溶液呈现出深紫色;当电子对合时,这种吸收会消失。0.5 mM的酒精溶液呈深色且在此浓度下,朗伯-比尔定律适用于有用的吸收范围。DPPH测定法是一种快速、简单、经济且广泛应用的方法,用于测量化合物作为自由基清除剂或氢供体的能力,并评估食品中的抗氧化活性。此外,该方法还可用于复杂生物体系中抗氧化剂的定量测定,既可用于固体样本也可用于液体样本。此方法易于操作并适用于测定水果和蔬菜汁的整体抗氧化能力和自由基清除活性。

用途 生化研究

反应信息

  • 作为反应物:
    描述:
    1,1-二苯-2-苦基肼氯磺酸 作用下, 生成
    参考文献:
    名称:
    RADICAL POLARIZING AGENTS FOR DYNAMIC NUCLEAR POLARIZATION
    摘要:
    本发明提供了多种基团,这些基团可作为极化化合物。举例的基团由本文所述的结构式(I)、(II)、(III)和(IV)的化合物表示。
    公开号:
    US20130243698A1
  • 作为产物:
    参考文献:
    名称:
    不对称氮40; 1 , Geminal systems-26 1 , N-氯肼3
    摘要:
    讨论了决定N-氯肼动力学和热力学稳定性的因素。无环N-氯肼仅以三烷基氯化二氮3a,b的形式存在。通过酰肼基中间体将2-酰基-1,1-二甲基肼6a,b氯化,得到1,4-二酰基-2,3-二甲基六氢-1,2,4,5-四嗪7a,b,并且氯化1-苯基吡唑啉丁-5-酮8得到苯基偶氮异戊酸酯9a,b。从双环肼获得稳定的N-氯肼;即 2-氯-1,2-二氮杂双环[2.2.2] octan-3-one 12和7-氯-1,7-二氮杂双环[2.2.1]庚烷16。N(7)在16中的受限反演在13 C-NMR光谱中观察到了其1-甲基季盐21。分离出无环的N-氯肼盐25。
    DOI:
    10.1016/s0040-4020(01)96503-2
  • 作为试剂:
    描述:
    苯并呋喃-2-硼酸tris-(dibenzylideneacetone)dipalladium(0)四氧化锇甲酸1,1-二苯-2-苦基肼N-[(1R,2R)-1,2-二苯基-2-(2-(4-甲基苄氧基)乙氨基)-乙基]-4-甲基苯磺酰胺(氯)钌(II)N-甲基吗啉氧化物三乙胺 、 silver carbonate 作用下, 以 四氢呋喃 、 aq. phosphate buffer 、 丙酮乙腈 为溶剂, 反应 48.17h, 生成 (S)-2-(benzofuran-2-yl(hydroxy)methyl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione
    参考文献:
    名称:
    酰基硼酸酯的催化不对称转移氢化:BMIDA 作为特权导向基团
    摘要:
    开发一种通用、高效、对映选择性的催化方法来合成手性醇仍然是一个艰巨的挑战。我们在本文中报道了N-甲基亚氨基二乙酰 (MIDA) 酰基硼酸酯的不对称转移氢化 (ATH) 作为一般的不依赖于底物的进入对映体富集仲醇的方法。具有(杂)芳基、烷基、炔基、烯基和羰基取代基的酰基-MIDA-硼酸酯的 ATH 可产生多种对映体富集的 α-硼醇。后者用于一系列基于硼部分的立体有择转化,能够合成具有两个密切相关的 α-取代基的甲醇,而使用直接不对称氢化方法无法获得高对映选择性,例如 ( R )-氯哌斯汀中间的。计算研究表明,与传统使用的芳基和炔基相比,BMIDA 基团是 Noyori-Ikariya ATH 中的一种优先对映选择性导向基团,因为催化剂的 η 6 -芳烃-CH 和BMIDA 中的 σ 键合氧原子。这项工作扩展了传统 ATH 的领域,并展示了其在解决对称合成挑战方面的巨大潜力。
    DOI:
    10.1021/jacs.4c05924
点击查看最新优质反应信息

文献信息

  • Stopped-Flow and Spectrophotometric Study on Radical Scavenging by Tea Catechins and the Model Compounds.
    作者:Yasushi SENBA、Tsukasa NISHISHITA、Keiko SAITO、Hiroe YOSHIOKA、Hisashi YOSHIOKA
    DOI:10.1248/cpb.47.1369
    日期:——
    Radical scavenging of four tea catechins, (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg) and (-)-eppigallocatechin gallate (EGCg), and the model compounds of their partial structure was examined against the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical using stopped-flow and spectrophotometric methods. The number of DPPH radicals scavenged by a polyphenol molecule was larger than that of phenolic hydroxyl groups, suggesting that hydrogens which bond directly to the aromatic ring can also participate in radical scavenging. A model for the scavenging reaction was proposed in which the reaction proceeded with successive dehydrogenation from a polyphenol molecule. Analysis of the second order reaction rate constants and the activation parameters between DPPH and polyphenol at the early stage of the reaction showed that the values depended on the number of phenolic hydroxyl groups and their mutual position. Contribution of the A ring of catechins to the rate constants was estimated to be far smaller than that from the B ring. In the EGCg molecule, the B ring and the gallate group were not independent, but acted as a single group for DPPH radical scavenging.
    对四种茶多酚(-)-表儿茶素(EC)、(-)-表没食子儿茶素(EGC)、(-)-表儿茶素没食子酸酯(ECg) 和(-)-表没食子儿茶素没食子酸酯(EGCg)及其部分结构的模型化合物, 用停流法和分光光度法研究了它们对1,1-二苯基-2-苦基肼基(DPPH)自由基的清除作用,发现一个多酚分子清除DPPH自由基的能力比羟基的数目强,说明直接与芳香环相连的氢原子也能参与自由基清除反应。提出了一个多酚分子连续脱氢的清除反应模型。研究了早期反应阶段DPPH和多酚的二级反应速率常数和活化参数,发现其数值与酚羟基数目及其相对位置有关。儿茶素A环对速率常数的贡献比B环小得多。在EGCg分子中,B环和没食子酸基团不是独立的,而是作为一个整体对DPPH自由基起清除作用。
  • Novel Water-Soluble Diorganyl Tellurides with Thiol Peroxidase and Antioxidant Activity
    作者:Takahiro Kanda、Lars Engman、Ian A. Cotgreave、Garth Powis
    DOI:10.1021/jo990842k
    日期:1999.10.1
    at pH = 7.4 by using the coupled GSSG reductase assay. Dialkyl telluride 10 turned out to be the most efficient catalyst. Several alkyl aryl tellurides 8 were also more efficient than any of the previously tested organotellurium compounds in this model. Bulky and electron-withdrawing aryl substituents seemed to reduce activity, whereas electron-donating groups enhanced it. Alkyl aryl selenide 9 was
    制备了具有磺丙基的新型水溶性二芳基碲化物,烷基芳基碲化物和二烷基碲化物,发现它们具有有效的过氧化物分解和断链抗氧化能力。将双(4-羟苯基)碲化物(4)的二锂,二钠,二钾和双-四甲基铵盐在叔丁醇水溶液中用2.3当量的1,3-丙磺酸内酯处理,得到相应的双-O盐5 -磺丙基丙基二芳基碲化物。用硼氢化钠在乙醇中还原各种二芳基二碲化物。将丙磺酸内酯加到所得的硬脂酸神经酸钠中后,沉淀出相应的3-芳基碲基丙烯基丙烷磺酸钠盐8。二苯基二硒化物和二丁基二碲化物类似地反应,分别得到3-苯硒烯基丙烷磺酸(9)和4-碲辛烷磺酸(10)的钠盐。使用耦合的GSSG还原酶测定法在pH = 7.4时评估了水溶性化合物的谷胱甘肽过氧化物酶样活性。事实证明,二烷基碲化物10是最有效的催化剂。在该模型中,几种烷基芳基碲化物8也比任何先前测试过的有机碲化合物更有效。庞大的和吸电子的芳基取代基似乎降低了活性,而给电子基团则增强了活
  • DDQ-promoted dehydrogenation from natural rigid polycyclic acids or flexible alkyl acids to generate lactones by a radical ion mechanism
    作者:Ye Ding、Zhangjian Huang、Jian Yin、Yisheng Lai、Shibo Zhang、Zhiguo Zhang、Lei Fang、Sixun Peng、Yihua Zhang
    DOI:10.1039/c1cc11633a
    日期:——
    A novel and facile DDQ-mediated dehydrogenation from natural rigid polycyclic acids or flexible alkyl acids to generate lactones is described. The formation of lactones proceeds by a radical ion mechanism, which has been established by DPPH -mediated chemical identification, ESR spectroscopy and an enol intermediate trapping.
    描述了一种新颖且容易的DDQ介导的从天然刚性多环酸或柔性烷基酸脱氢生成内酯的方法。内酯的形成是通过自由基离子机理进行的,该机理已通过DPPH介导的化学鉴定,ESR光谱和烯醇中间体捕集得以确立。
  • Structure and antioxidant activity of brominated flavonols and flavanones
    作者:Gonçalo C. Justino、Margarida Rodrigues、M. Helena Florêncio、Lurdes Mira
    DOI:10.1002/jms.1630
    日期:2009.10
    Hypobromous acid (HOBr) produced by both eosinophil peroxidase (EPO) and myeloperoxidase (MPO) is a stronger oxidant than HOCl, and is also essential for optimal and efficient microbial killing. Considering the potential cytotoxic effect of HOBr, if it is formed outside the phagosome, it should be useful to scavenge it in order to protect the nearby tissues. In this study the ability of selected flavonoids to protect against HOBr mediated oxidation reactions was performed through a competitive reaction, and the resulting products identified by high performance liquid chromatography (HPLC) and electrospray ionization tandem mass spectrometry(ESI-MS/MS). Several structural features were found to be important to confer high antioxidant activity to flavonoids towards HOBr: the C2C3 double bond and the 3OH group in the C-ring, and the presence of both 5OH and 7OH groups in the A-ring. The MS results showed that flavonoids are dibrominated in the A-ring, suggesting that (except for fisetin) bromination occurs at C6 and C8 positions, through an electrophilic aromatic substitution reaction. The chemical modifications achieved by bromination of flavonoids have changed their biological properties, presenting their brominated derivatives higher antioxidant activity, as radical scavengers, and higher lipophilicity, than the parent flavonoids. Brominated flavonoids may then diffuse easily through membranes increasing the intracellular concentration of the compounds. These locally formed metabolites may also interact with signaling cascades involving cytokines and regulatory transcription factors, thus playing a role in inflammation and in the regulation of immune response. Copyright © 2009 John Wiley & Sons, Ltd.
    由嗜酸性粒细胞过氧化物酶(EPO)和髓过氧化物酶(MPO)产生的次溴酸(HOBr)是一种比次氯酸(HOCl)更强的氧化剂,并且对于最佳和高效的微生物杀灭至关重要。考虑到HOBr可能的细胞毒性效应,如果它在吞噬体外形成,则清除它可以保护附近的组织。在本研究中,选择的黄酮类化合物对抗HOBr介导的氧化反应的保护能力通过竞争反应进行研究,并通过高效液相色谱(HPLC)和电喷雾电离串联质谱(ESI-MS/MS)识别出所产生的产物。发现几个结构特征对赋予黄酮类化合物高抗氧化活性与HOBr相关非常重要:C2=C3双键和C环中的3-OH基团,以及A环中同时存在的5-OH和7-OH基团。质谱结果显示,黄酮类化合物在A环中被二溴化,表明(除了鬼针草素)溴化发生在C6和C8位点,通过电亲电芳香取代反应实现。黄酮类化合物的溴化所带来的化学修饰改变了它们的生物学特性,使得其溴化衍生物在作为自由基清除剂时表现出更高的抗氧化活性和更高的脂溶性,较之于母体黄酮。溴化黄酮可能更容易通过膜扩散,从而提高化合物的细胞内浓度。这些局部形成的代谢物也可能与涉及细胞因子和调节转录因子的信号传导级联反应相互作用,从而在炎症和免疫应答的调节中发挥作用。版权所有 © 2009 John Wiley & Sons, Ltd.
  • Model compound studies related to peroxidases-II
    作者:T.G. Traylor、William A. Lee、Dennis V. Stynes
    DOI:10.1016/0040-4020(84)85061-9
    日期:1984.1
    The chemical reactivity of the model analog to compound I of the peroxidases resulting from the reaction of “chelated protohemin” and m-chloroperbenzoic acid is examined. The model intermediate shows no H-atom abstraction or O insertion activity and substrate reactivity depends only on the E value of the substrate. A Marcus theory treatment of the available kinetic data for HRP suggests that the oxidative
    该模型模拟的化学反应性化合物I从“螯合氯化血红素”和反应得到的过氧化物酶的米氯过苯甲酸进行检测。中间体模型没有显示H原子抽象或O插入活性,底物反应性仅取决于底物的E值。Marcus理论对HRP可用动力学数据的处理表明,底物氧化的氧化途径是外层电子转移。从模型催化1,4-环己二烯氧化为苯的结果,提出了细胞色素P-450催化羟基化的另一种机理。
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐