摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

11α-hydroxymethyldehydrocostuslactone | 272781-01-8

中文名称
——
中文别名
——
英文名称
11α-hydroxymethyldehydrocostuslactone
英文别名
(3R,3aS,6aR,9aR,9bS)-3-(hydroxymethyl)-6,9-dimethylidene-3a,4,5,6a,7,8,9a,9b-octahydro-3H-azuleno[4,5-b]furan-2-one
11α-hydroxymethyldehydrocostuslactone化学式
CAS
272781-01-8
化学式
C15H20O3
mdl
——
分子量
248.322
InChiKey
JACOXIUOTHSYLC-PEDHHIEDSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.1
  • 重原子数:
    18
  • 可旋转键数:
    1
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    46.5
  • 氢给体数:
    1
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    11α-hydroxymethyldehydrocostuslactone叔丁基过氧化氢 、 selenium(IV) oxide 作用下, 以62%的产率得到(3R,11R)-3,13-dihydroxy-guaiane-4(15),10(14)-dien-6,12-olide
    参考文献:
    名称:
    天然和合成倍半萜内酯类似物的杀真菌活性
    摘要:
    评估了 36 种天然和合成倍半萜内酯与愈创木酚内酯、反式、反式-germacranolide、顺式、顺式-germacranolide、melampolide 和eudesmanolide 碳骨架对植物病原真菌Colletotrichum acutatum、C. fragariae、C. gloeosporium, gloeosporioides 的杀真菌活性Botrytis cinerea 和 Phomopsis sp。提供了活性化合物 dehydrozaluzanin C、dehydrocostuslactone、5alpha-hydroxydehydrocostuslacone、costunolide 和 zaluzanin C 的剂量反应数据。一种新的 96 孔微生物测定程序用于快速轻松地评估抗真菌活性,用于将这些化合物与商业杀菌剂标准进行比较。还提出了一些构效结论。
    DOI:
    10.1016/s0031-9422(00)00008-x
  • 作为产物:
    描述:
    (3R,3aS,6aR,9aR,9bS)-3-{[(4-methoxybenzyl)oxy]methyl}-6,9-dimethylenedecahydroazuleno[4,5-b]furan-2(9bH)-one 在 2,3-二氯-5,6-二氰基-1,4-苯醌 作用下, 以 二氯甲烷 为溶剂, 以86%的产率得到11α-hydroxymethyldehydrocostuslactone
    参考文献:
    名称:
    基于Eudesmane型和Guaiane型倍半萜烯内酯的活性Strigolactone类似物的合成。
    摘要:
    角内酯是植物分泌的天然产物,可刺激杂草萌发。它们在除草剂中的使用受到限制,因为它们的产量小,但生物活性类似物的合成提供了另一种来源。在这项工作中,已经合成了十一种类似物。其中有9种化合物属于一个名为eudesmanestrigolactones的新家族。该过程很短(3–6个步骤),起始原料的分离度为数克,全球单产最高可达8%,这大大提高了单产。在生物测定中,这些化合物发芽了高比例的百里香(Phelipanche ramosa),茄子(Orobanche cumana)和茄子(Orobanche crenata)。种子,即使是纳克剂量(100 nM)。生物活性是立体化学依赖性的,并且根据烯醇醚的存在和几何形状,丁烯内酯的取向以及环A的不饱和度进行了讨论。所报道的化合物提供了一组易于获得的化感物质,具有作为预防性除草剂的潜在应用。
    DOI:
    10.1021/acs.jafc.0c02361
点击查看最新优质反应信息

文献信息

  • An easy access to bioactive 13-hydroxylated and 11,13-dihydroxylated sesquiterpene lactones (SLs) through Michael addition of a nucleophilic hydroxyl group
    作者:Francisco A. Macías、María D. García-Díaz、Guillermo M. Massanet、José F. Gómez-Madero、Frank R. Fronczek、Juan C.G. Galindo
    DOI:10.1016/j.tet.2008.09.024
    日期:2008.12
    The addition of a hydroxyl group to α,β-unsaturated carbonyl systems provides a new and easy access to bioactive difunctionalized sesquiterpene lactones (SLs) through a Michael addition to the α-methylene-γ-lactone system. The use of HMPA to enhance the nucleophilic properties of the hydroxyl groups and to stabilize the enolate is discussed. Also, we present a proposal for the mechanism based on the
    通过在α-亚甲基-γ-内酯系统中加成迈克尔基,向α,β-不饱和羰基系统中添加羟基可轻松获得新的生物活性双官能倍半萜烯内酯(SLs)。讨论了使用HMPA增强羟基的亲核性质并稳定烯醇化物。另外,我们根据获得的实验数据提出了该机制的建议。该反应的范围和有用性与其他底物一起探索,并受到对一定水平位阻以避免链缩聚的需求的限制。然而,该反应可与酯,酮和醛一起使用。通过X射线衍射分析已经阐明了某些产物的绝对立体化学。
  • Easy Access to Alkoxy, Amino, Carbamoyl, Hydroxy, and Thiol Derivatives of Sesquiterpene Lactones and Evaluation of Their Bioactivity on Parasitic Weeds
    作者:Antonio Cala、Jesús G. Zorrilla、Carlos Rial、José M. G. Molinillo、Rosa M. Varela、Francisco A. Macías
    DOI:10.1021/acs.jafc.9b03098
    日期:2019.9.25
    C-13. On applying this reaction to both compounds, it was possible to introduce the functional groups alkoxy, amino, carbamoyl, hydroxy, and thiol to give products in good to high yields, depending on the base and solvent employed. In particular, the introduction of a thiol group at C-13 in both compounds was achieved with outstanding yields (>90%) and this is unprecedented for these sesquiterpene lactones
    假设倍半萜内酯的α-亚甲基-γ-内酯部分是其生物活性的关键单元。结果,这些化合物的修饰集中在该片段上。在本文报道的工作中,选择了两个倍半萜烯内酯,即脱氢木香内酯和β-环木香烯内酯,这是通过木香内酯的受控环化获得的一种马地内酯,通过在C-13处的迈克尔加成进行修饰。将此反应应用于两种化合物时,可以引入官能团烷氧基,氨基,氨基甲酰基,羟基和硫醇,以高至高收率得到产物,具体取决于所用的碱和溶剂。特别是,两种化合物都在C-13处引入了硫醇基,收率很高(> 90%),这对于这些倍半萜内酯是前所未有的。Orobanche cumana和Phelipanche ramosa。讨论了构效关系。
  • Bioprospection of Phytotoxic Plant-Derived Eudesmanolides and Guaianolides for the Control of <i>Amaranthus viridis</i>, <i>Echinochloa crus-galli</i>, and <i>Lolium perenne</i> Weeds
    作者:Jesús G. Zorrilla、David M. Cárdenas、Carlos Rial、José M.G. Molinillo、Rosa M. Varela、Marco Masi、Francisco A. Macías
    DOI:10.1021/acs.jafc.3c06901
    日期:2024.1.24
    phytotoxicities of a selection of eudesmanolides and guaianolides, including natural products and new derivatives obtained by semisynthesis from plant-isolated sesquiterpene lactones, were evaluated in bioassays against three weeds of concern in agriculture (Amaranthus viridis L., Echinochloa crus-galli L., and Lolium perenne L.). Both eudesmanolides and guaianolides were active against the root and
    在生物测定中,针对农业中关注的三种杂草(Amaranthus viridis L.、Echinochloa crus-galli L. 和 Lolium perenne)评估了一系列 Eudesmanolides 和 guajanolides 的植物毒性,包括天然产物和通过植物分离倍半萜内酯半合成获得的新衍生物L.).Eudesmanolides 和 愈创木内酯 均对所有物种的根和芽生长具有活性,其中 eudesmanolides 普遍表现出改进的活性。用作阳性对照的除草剂获得的 IC50 值(分别在根和芽生长时,A. viridis:27.8 和 85.7 μM;E. crus-galli:167.5 和 288.2 μM;L. perenne: 99.1 和 571.4 μM)在大多数病例中得到改善。讨论了结构-活性关系,发现 A 环和 C-13 的羟基化以及羟基的位置、数量和方向以及
  • Sesquiterpene Lactones with Potential Use as Natural Herbicide Models. 2. Guaianolides
    作者:Francisco A. Macías、Juan C. G. Galindo、Diego Castellano、Raúl F. Velasco
    DOI:10.1021/jf0005364
    日期:2000.11.1
    A structure-activity study to evaluate the effect of 17 guaianolide sesquiterpene lactones (in a range of 100-0.001 muM) on the growth and germination of several mono- and dicotyledon target species is accomplished. Results are compared with those obtained in the same bioassay with an internal standard, the commercial herbicide Logran, to validate the results with a known active formulation and to compare the results with a commercial product to test their potential use as natural herbicide models. Specific conditions for the selective mono- or polyhydroxylation of guaianolides using the SeO2/tert-butyl hydroperoxide system are presented and discussed. The high regio- and stereoselectivities of the reaction are explained through the specific structural requirements of the bulky first adduct formed during the ene reaction. These compounds appear to have deeper effects on the growth of either monocots or dicots than the previously tested germacranolides. Otherwise, the lactone group seems to be necessary for the activity, though it does not necessarily need to be unsaturated. However, the presence of a second and easily accessible unsaturated carbonyl system greatly enhances the inhibitory activity. Lipophilicity and the stereochemistry of the possible anchoring sites are also crucial factors for the activity. Finally, the levels of growth inhibition obtained with some compounds on dicots or monocots are totally comparable to those of Logran and allow proposing them as lead compounds.
  • New Chemical Clues for Broomrape-Sunflower Host−Parasite Interactions: Synthesis of Guaianestrigolactones
    作者:Francisco A. Macías、María D. García-Díaz、Alejandro Pérez-de-Luque、Diego Rubiales、Juan C. G. Galindo
    DOI:10.1021/jf900870j
    日期:2009.7.8
    A comparative structure-activity relationship (SAR) study has been conducted with several guaianolide sesquiterpene lactones (SLs) as inducers of the germination of sunflower broomrape (Orobanche cumana) seeds. Compounds were selected and synthesized to study the influence of the lactone-enol-gamma-lactone moiety on the selectivity of SLs toward the stimulation of sunflower broomrape germination. The results clearly illustrate that SLs are recognized only by O. cumana, while the introduction of a strigol-like second lactone moiety in the guaianolide backbone results in the loss of specificity and hence the germination of other broomrape species. We have named this new class of compounds guaianestrigolactones (GELs).
查看更多

同类化合物

(5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,11-二酮 齐墩果-12-烯-2α,3β,28-三醇 齐墩果-12-烯-29-酸,3,22-二羟基-11-羰基-,g-内酯,(3b,20b,22b)- 齐墩果-12-烯-28-酸,3-[(6-脱氧-4-O-b-D-吡喃木糖基-a-L-吡喃鼠李糖基)氧代]-,(3b)-(9CI) 鼠特灵 鼠尾草酸醌 鼠尾草酸 鼠尾草酚酮 鼠尾草苦内脂 黑蚁素 黑蔓醇酯B 黑蔓醇酯A 黑蔓酮酯D 黑海常春藤皂苷A1 黑檀醇 黑果茜草萜 B 黑五味子酸 黏黴酮 黏帚霉酸 黄黄质 黄钟花醌 黄质醛 黄褐毛忍冬皂苷A 黄蝉花素 黄蝉花定