Facile Entry to Substituted Decahydroquinoline Alkaloids. Total Synthesis of Lepadins A−E and H
摘要:
Condensation of a L-alanine derived delta-bromo-beta-silyloxy-propylamine with 1,3-cyclohexadione followed by alkylative cyclization produces a bicyclic enone. Diastereoselective Pt/C-catalyzed hydrogenation of this enone in HOAc provides a 5-oxo-cis-fused decahydroquinoline. Wittig olefination of this decahydroquinoline and subsequent epimerization of the resulting 5-formyl intermediate gives rise to a 5-beta-formyl decahydroquinoline exclusively. In a parallel procedure, Peterson reaction of this decahydroquinoline and subsequent hydrogenation of the generated 5-exo-olefin provides a decahydroquinoline with a 5-alpha-substituent predominantly. For these two diastereoselective processes, using the intermediates without N-protection as the substrates is essential because the corresponding N-Boc intermediates give poor diastereoselectivity. The intermediate with beta-form side chain is further converted into lepadins A-C via carbon chain elongation, while the intermediate with alpha-form side chain is transformed into lepadins D, E, and H and corresponding 5'-epimers via connection with two sulfones generated from two Sharpless epoxidation products. By comparison of the rotations and NMR data, the stereochemistry of lepadins D, E, and H is assigned as 2S, 3R, 4aS, 5S, 8aR, 5'R.
Facile Entry to Substituted Decahydroquinoline Alkaloids. Total Synthesis of Lepadins A−E and H
摘要:
Condensation of a L-alanine derived delta-bromo-beta-silyloxy-propylamine with 1,3-cyclohexadione followed by alkylative cyclization produces a bicyclic enone. Diastereoselective Pt/C-catalyzed hydrogenation of this enone in HOAc provides a 5-oxo-cis-fused decahydroquinoline. Wittig olefination of this decahydroquinoline and subsequent epimerization of the resulting 5-formyl intermediate gives rise to a 5-beta-formyl decahydroquinoline exclusively. In a parallel procedure, Peterson reaction of this decahydroquinoline and subsequent hydrogenation of the generated 5-exo-olefin provides a decahydroquinoline with a 5-alpha-substituent predominantly. For these two diastereoselective processes, using the intermediates without N-protection as the substrates is essential because the corresponding N-Boc intermediates give poor diastereoselectivity. The intermediate with beta-form side chain is further converted into lepadins A-C via carbon chain elongation, while the intermediate with alpha-form side chain is transformed into lepadins D, E, and H and corresponding 5'-epimers via connection with two sulfones generated from two Sharpless epoxidation products. By comparison of the rotations and NMR data, the stereochemistry of lepadins D, E, and H is assigned as 2S, 3R, 4aS, 5S, 8aR, 5'R.
A concise synthesis of the marine alkaloids (â)-lepadins AâC from a phenylglycinol-derived tricyclic lactam is reported. Key steps from the stereochemical standpoint involve stereoselective cyclocondensation, double bond hydrogenation, oxazolidine opening, hydroborationâoxidation, and HornerâWadsworthâEmmons reactions.
The marine alkaloids (−)‐lepadins A–C and (+)‐lepadin D, belonging to two diastereoisomeric series, were synthesized from an (R)‐phenylglycinol‐derived tricyclic lactam via a common cis‐decahydroquinoline intermediate. Crucial aspects of the synthesis are the stereochemical control in the assembly of the cis‐decahydroquinoline platform, in the introduction of the C2 methyl and C3 hydroxy substituents