摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Fructose 1,6-bisphosphate | 488-69-7

中文名称
——
中文别名
——
英文名称
Fructose 1,6-bisphosphate
英文别名
beta-D-fructofuranose 1,6-bisphosphate(4-);[(2R,3S,4S,5R)-2,3,4-trihydroxy-5-(phosphonatooxymethyl)oxolan-2-yl]methyl phosphate
Fructose 1,6-bisphosphate化学式
CAS
488-69-7
化学式
C6H10O12P2
mdl
——
分子量
336.086
InChiKey
RNBGYGVWRKECFJ-ARQDHWQXSA-J
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    72--74°C
  • 沸点:
    819.8±75.0 °C(Predicted)
  • 密度:
    2.007±0.06 g/cm3(Predicted)
  • 溶解度:
    甲醇(微溶)、水(微溶)

计算性质

  • 辛醇/水分配系数(LogP):
    -5.9
  • 重原子数:
    20
  • 可旋转键数:
    4
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    215
  • 氢给体数:
    3
  • 氢受体数:
    12

安全信息

  • 危险等级:
    8
  • 危险品运输编号:
    UN 1759
  • 海关编码:
    2940000000
  • 包装等级:
    III

SDS

SDS:2815485aadd03f1cbb20def171fc9bb5
查看

制备方法与用途

果糖二磷酸钠(1,6-二磷酸果糖,FDP) 功效和作用

果糖二磷酸钠(1,6-二磷酸果糖,FDP)作为细胞内糖代谢的重要中间产物,能够调节糖代谢中若干酶的活性。作为一种分子平上的药物,它被广泛用于治疗冠心病、心绞痛、心肌梗塞、脑梗塞和休克等疾病,并取得了满意的效果。近年来,在其他疾病的临床应用方面也有了新的进展。

化学性质

果糖二磷酸钠是一种白色或类白色的结晶性粉末,易溶于但在乙醇丙酮乙醚中几乎不溶。在生命活动中,它作为高能磷酸键的载体,参与ATP三磷酸腺苷)的合成与分解过程。

生物活性

果糖二磷酸钠是一种细胞保护性的天然糖磷酸盐,在心血管缺血、镰状细胞性贫血和哮喘的研究中有潜在的应用价值。通过刺激无氧糖酵解作用,它在缺血条件下能够产生三磷酸腺苷ATP)。

靶点
  • 人体内源性代谢物
用途

果糖二磷酸钠主要用于心血管系统疾病的治疗。

反应信息

  • 作为反应物:
    描述:
    Fructose 1,6-bisphosphate 在 FruA (125 U) 作用下, 反应 120.0h, 生成 (2R,3S,4S,5R)-2-(hydroxymethyl)-5-[2-[(2R,3S,4S,5R)-3,4,5-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]ethyl]oxolane-2,3,4-triol
    参考文献:
    名称:
    Eyrisch, Oliver; Fessner, Wolf-Dieter, Angewandte Chemie, 1995, vol. 107, # 15, p. 1738 - 1740
    摘要:
    DOI:
  • 作为产物:
    描述:
    adenosine 5'-triphosphate 、 beta-D-fructofuranose 6-phosphate(2-) 生成 adenosine 5'-diphosphateFructose 1,6-bisphosphate氢(+1)阳离子
    参考文献:
    名称:
    Structure and allosteric regulation of eukaryotic 6-phosphofructokinases
    摘要:
    摘要

    虽然原核生物6-磷酸果糖激酶(糖酵解的关键酶之一)的晶体结构已经有了近25年的时间,但对于更为复杂和高度调节的真核生物酶的结构信息仍然缺乏。本综述基于最近的晶体结构、动力学分析和定点突变数据,重点介绍真核生物6-磷酸果糖激酶的分子结构和变构调节的结构基础。

    DOI:
    10.1515/hsz-2013-0130
点击查看最新优质反应信息

文献信息

  • Crystal structure of human platelet phosphofructokinase-1 locked in an activated conformation
    作者:Marco Kloos、Antje Brüser、Jürgen Kirchberger、Torsten Schöneberg、Norbert Sträter
    DOI:10.1042/bj20150251
    日期:2015.8.1

    Phosphofructokinase-1 (Pfk) acts as the main control point of flux through glycolysis. It is involved in complex allosteric regulation and Pfk mutations have been linked to cancer development. Whereas the 3D structure and structural basis of allosteric regulation of prokaryotic Pfk has been studied in great detail, our knowledge about the molecular basis of the allosteric behaviour of the more complex mammalian Pfk is still very limited. To characterize the structural basis of allosteric regulation, the subunit interfaces and the functional consequences of modifications in Tarui's disease and cancer, we analysed the physiological homotetramer of human platelet Pfk at up to 2.67 Å resolution in two crystal forms. The crystallized enzyme is permanently activated by a deletion of the 22 C-terminal residues. Complex structures with ADP and fructose-6-phosphate (F6P) and with ATP suggest a role of three aspartates in the deprotonation of the OH-nucleophile of F6P and in the co-ordination of the catalytic magnesium ion. Changes at the dimer interface, including an asymmetry observed in both crystal forms, are the primary mechanism of allosteric regulation of Pfk by influencing the F6P-binding site. Whereas the nature of this conformational switch appears to be largely conserved in bacterial, yeast and mammalian Pfk, initiation of these changes differs significantly in eukaryotic Pfk.

    磷酸果激酶-1(Pfk)是糖酵解通量的主要控制点。它参与复杂的异位调节,Pfk 突变与癌症的发生有关。虽然对原核生物 Pfk 的三维结构和异位调节的结构基础进行了非常详细的研究,但我们对更复杂的哺乳动物 Pfk 异位行为的分子基础的了解仍然非常有限。为了表征异构调节的结构基础、亚基界面以及在塔鲁伊氏病和癌症中修饰的功能性后果,我们在两种晶体形态中以高达 2.67 Å 的分辨率分析了人血小板 Pfk 的生理同源四聚体。通过删除 22 个 C 端残基,结晶酶被永久激活。与 ADP 和 6-磷酸果糖F6P)以及与 ATP 的复合物结构表明,三个天冬氨酸在 的 OH-亲核物的去质子化以及催化离子的配位中发挥作用。二聚体界面的变化,包括在两种晶体形态中观察到的不对称,是通过影响 结合位点对 Pfk 进行异构调节的主要机制。虽然这种构象转换的性质在细菌、酵母和哺乳动物的 Pfk 中似乎基本一致,但在真核生物的 Pfk 中,这些变化的起始过程却有很大不同。
  • Cloning, sequence analysis and over-expression of the gene for the class II fructose 1,6-bisphosphate aldolase of <i>Escherichia coli</i>
    作者:P R Alefounder、S A Baldwin、R N Perham、N J Short
    DOI:10.1042/bj2570529
    日期:1989.1.15

    Nucleotide sequence analysis of the Escherichia coli chromosomal DNA inserted in the plasmid pLC33-5 of the Clarke and Carbon library [Clarke & Carbon (1976) Cell 9, 91-99] revealed the existence of the gene, fda, encoding the Class II (metal-dependent) fructose 1,6-bisphosphate aldolase of E. coli. The primary structure of the polypeptide chain inferred from the DNA sequence of the fda gene comprises 359 amino acids, including the initiating methionine residue, from which an Mr of 39,146 could be calculated. This value is in good agreement with that of 40,000 estimated from sodium dodecyl sulphate-polyacrylamide gel electrophoresis of the purified dimeric enzyme. The amino acid sequence of the Class II aldolase from E. coli showed no homology with the known amino acid sequences of Class I (imine-forming) fructose 1,6-bisphosphate aldolases from a wide variety of sources. On the other hand, there was obvious homology with the N-terminal sequence of 40 residues already established for the Class II fructose 1,6-bisphosphate aldolase of Saccharomyces cerevisiae. These Class II aldolases, one from a prokaryote and one from a eukaryote, evidently are structurally and evolutionarily related. A 1029 bp-fragment of DNA incorporating the fda gene was excised from plasmid pLC33-5 by digestion with restriction endonuclease HaeIII and subcloned into the expression plasmid pKK223-3, where the gene came under the control of the tac promoter. When grown in the presence of the inducer isopropyl-beta-D-thiogalactopyranoside, E. coli JM101 cells transformed with this recombinant expression plasmid generated the Class II fructose 1,6-bisphosphate aldolase as approx. 70% of their soluble protein. This unusually high expression of an E. coli gene should greatly facilitate purification of the enzyme for any future structural or mechanistic studies.

    对Clarke和Carbon文库中质粒pLC33-5中插入的大肠杆菌染色体DNA的核苷酸序列分析揭示了fda基因的存在,该基因编码大肠杆菌的II类(属依赖性)果糖1,6-二磷酸醛酸裂解酶。从fda基因的DNA序列推断的多肽链的初级结构包括359个氨基酸,包括起始甲酸残基,从中可以计算出39,146的分子量。这个值与从纯化的二聚酶的十二烷基硫酸钠-聚丙烯酰胺凝胶电泳估计的40,000相符。大肠杆菌的II类醛酸裂解酶的氨基酸序列与来自各种来源的I类(亚胺形成)果糖1,6-二磷酸醛酸裂解酶的已知氨基酸序列没有同源性。另一方面,大肠杆菌的II类醛酸裂解酶的基末端序列与已经确定的酵母菌Saccharomyces cerevisiae的II类果糖1,6-二磷酸醛酸裂解酶的基末端序列具有明显的同源性。这些来自原核生物和真核生物的II类醛酸裂解酶显然在结构和进化上有关联。通过HaeIII限制内切酶消化从质粒pLC33-5中切割出包含fda基因的1029 bp DNA片段,并将其亚克隆到表达质粒pKK223-3中,在该基因下控制tac启动子。当在诱导剂异丙基-β-D-代半乳糖苷的存在下生长时,转化为该重组表达质粒的E. coli JM101细胞生成约70%的可溶性蛋白质的II类果糖1,6-二磷酸醛酸裂解酶。这种异常高的大肠杆菌基因表达应该极大地促进了酶的纯化,以便进行任何未来的结构或机制研究。
  • Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases
    作者:Benoit Jacques、Mathieu Coinçon、Jurgen Sygusch
    DOI:10.1074/jbc.ra117.001098
    日期:2018.5
    release. A d-tagatose 1,6-bisphosphate enzymatic complex reveals how His-180-mediated proton abstraction controls stereospecificity of the cleavage reaction. Recognition and discrimination of the reaction products, dihydroxyacetone-P and d-glyceraldehyde 3-P, occurs via charged hydrogen bonds between hydroxyl groups of the triose-Ps and conserved residues, Asp-82 and Asp-255, respectively, and are crucial
    两种细菌属 (Zn2+) 依赖性 d-果糖-1,6-二磷酸 (FBP) 醛缩酶与底物、类似物和丙糖-P 反应产物的复合物的晶体结构被确定为 1.5-2.0 Å 分辨率。低温捕获在天然或突变的幽门螺杆菌醛缩酶晶体中的配体复合物使 FBP C3-C4 键裂解的新机制描述成为可能。该反应机制使用催化循环期间的活性位点重塑,暗示由活性位点环的构象变化介导的 Zn2+ 辅助因子的重新定位。底物结合会引发 P1 磷酸盐结合引发的构象变化,从而释放 Zn2+-螯合 His-180,使其充当 FBP C4 羟基处质子提取的通用碱基。第二个螯合 His-83 氢键与底物 C4 羟基结合,并通过稳定质子提取过程中产生的负电荷来辅助裂解。裂解与属辅助因子从内部到表面暴露位点的重新定位一致,从而稳定了新生的烯二醇形式。保守残基 Glu-142 对于产品发布前烯二醇形式的质子化至关重要。d-塔格糖 1,6-二磷酸酶复合物揭示了
  • Exploring substrate binding and discrimination in fructose1,6-bisphosphate and tagatose 1,6-bisphosphate aldolases
    作者:Shaza M. Zgiby、Graeme J. Thomson、Seema Qamar、Alan Berry
    DOI:10.1046/j.1432-1327.2000.01191.x
    日期:2000.3
    binding pocket of the active site, demonstrating that Ser61 is involved in binding glyceraldehyde 3-phosphate. In contrast a S61T mutant had no effect on catalysis emphasizing the importance of an hydroxyl group for this role. Mutation of Asn35 (N35A) resulted in an enzyme with only 1.5% of the activity of the wild-type enzyme and different partial reactions indicate that this residue effects the binding
    果糖1,6-二磷酸醛缩酶可催化甘油-P和甘油3-磷酸可逆缩合为果糖1,6-二磷酸。大肠杆菌II类果糖1,6-二磷酸醛缩酶的最新结构[Hall,DR,Leonard,GA,Reed,CD,Watt,CI,Berry,A。&Hunter,WN(1999)J.Mol.Biol.215:403-404。生物学 [287,383-394]在过渡态类似物磷酸羟基羟基异羟酸酯的存在下描绘了各个氨基酸在结合甘油-P和该机制的初始质子提取步骤中的作用。现在已使用X射线结构以及序列比对,定点诱变和稳态酶动力学来扩展这些研究,以绘制与3-磷酸甘油醛结合的重要残基。根据这些研究,三个残基(Asn35,已确定Ser61和Lys325)在催化中很重要。我们表明,将Ser61突变为丙酸会增加果糖1、6-双磷酸16倍的Km值,并且产物抑制研究表明,这种作用在活性位点的甘油醛3-磷酸结合口袋中表现得最为明显,表明Ser
  • MJ0400 from Methanocaldococcus jannaschii exhibits fructose-1,6-bisphosphate aldolase activity
    作者:Anne K. Samland、Mei Wang、Georg A. Sprenger
    DOI:10.1111/j.1574-6968.2008.01079.x
    日期:2008.4
    The central carbon metabolism is well investigated in bacteria, but this is not the case for archaea. MJ0400-His6 from Methanocaldococcus jannaschii catalyzes the cleavage of fructose-1,6-bisphosphate (FBP) to glyceraldehyde-3-phosphate and dihydroxyacetone phosphate with a Vmax of 33 mU mg−1 and a Km of 430 μM at 50 °C. MJ0400-His6 is inhibited competitively by erythrose-4-phosphate with a Ki of 380 μM and displays heat stability with a half-life of c. 1 h at 100 °C. Hence, MJ0400 is the second gene encoding for an FBP aldolase in M. jannaschii. Previously, MJ0400 was shown to act as an 2-amino-3,7-dideoxy-d-threo-hept-6-ulosonic acid synthase. This indicates that MJ0400 is involved in both the carbon metabolism and the shikimate pathway in M. jannaschii.
    细菌的中央碳代谢已得到充分研究,但古细菌的情况并非如此。Methanocaldococcus jannaschii中的MJ0400-His6催化果糖-1,6-二磷酸(FBP)裂解为甘油醛-3-磷酸和二羟基丙酮磷酸,在50℃时Vmax为33 mU mg-1,Km为430 μM。MJ0400-His6受赤藓糖-4-磷酸的竞争性抑制,Ki为380 μM,在100℃时具有热稳定性,半衰期约为1小时。因此,MJ0400是M. jannaschii中第二个编码FBP醛缩酶基因。此前,MJ0400被证明是2-基-3,7-二脱氧-D-苏式-庚-6-酮糖酸合成酶。这表明MJ0400在M. jannaschii中参与碳代谢和黄嘌呤代谢途径。
查看更多