Evidence for the Direct Transfer of the Carboxylate of N5-Carboxyaminoimidazole Ribonucleotide (N5-CAIR) To Generate 4-Carboxy-5-aminoimidazole Ribonucleotide Catalyzed by Escherichia coli PurE, an N5-CAIR Mutase
摘要:
Formation of 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) in the purine pathway in most prokaryotes requires ATP, HCO3-, aminoimidazole ribonucleotide (AIR), and the gene products PurK and PurE. PurK catalyzes the conversion of AIR to N-5-carboxyaminoimidazole ribonucleotide (N-5-CAIR) in a reaction that requires both ATP and HCO3-. PurE catalyzes the unusual rearrangement of N-5-CAIR to CAIR. To investigate the mechanism of this rearrangement, [4,7-C-13]-N-5-CAIR and [7-C-14]NS-CAIR were synthesized and separately incubated with PurE in the presence of ATP, aspartate, and 4-(N-succinocarboxamide)-5-aminoimidazole ribonucleotide (SAICAR) synthetase (PurC). The SAICAR produced was isolated and analyzed by NMR spectroscopy or scintillation counting, respectively. The PurC trapping of CAIR as SAICAR was required because of the reversibility of the PurE reaction. Results from both experiments reveal that the carboxylate group of the carbamate of N-5-CAIR is transferred directly to generate CAIR without equilibration with CO2/HCO3- in solution. The mechanistic implications of these results relative to the PurE-only (CO2- and AIR-requiring) AIR carboxylases are discussed.
Mouse kidney contains two 3(17)α-hydroxysteroid dehydrogenases (HSDs) that show essentially the same properties except for their isoelectric points. However, the structural differences and physiological roles of the two enzymes remain unknown. In this study, we have isolated cDNAs for the two 3(17)α-HSDs from a total RNA sample of mouse kidney by reverse transcription-PCR. The identity of the cDNAs was confirmed by characterization of the recombinant enzymes that showed the same molecular weights, pI values, pH optima, substrate specificity and inhibitor sensitivity as those of the enzymes from mouse kidney. We also found that the recombinant enzymes reduce precursors of neuroactive progesterone derivatives, 5α-dihydrotestoserone, deoxycorticosterone, dehydroepiandrosterone, dehydroepiandrosterone sulfate and estrone at low Km values of 0.3—2 μM. The two enzymes belonged to the aldo-keto reductase (AKR) family, and their 323-amino acid sequences differed only by five amino acids. The sequences of the two isoforms are identical to those of proteins that are predicted to be encoded in a gene for AKR1C21 in the database of the mouse genome. However, the mRNAs for the two isoforms were expressed in mouse kidney and other tissues, in which their expression levels were different. The results indicate an important role of 3(17)α-HSD in controlling the concentrations of various steroid hormones in the mouse tissues, and suggest the existence of two genes for the two isoforms of the enzyme.
作者:Shu-Shan Gao、Marc Garcia-Borràs、Joyann S. Barber、Yang Hai、Abing Duan、Neil K. Garg、K. N. Houk、Yi Tang
DOI:10.1021/jacs.7b01089
日期:2017.3.15
method of forming C-O bonds and cyclic ethers in synthetic chemistry. In studying the biosynthesis of the fungal natural product herqueinone, we identified an enzyme that can perform an intramolecularenantioselective hydroalkoxylation reaction. PhnH catalyzes the addition of a phenol to the terminal olefin of a reverse prenyl group to give a dihydrobenzofuran product. The enzyme accelerates the reaction
Characterization and Mechanistic Studies of DesII: A Radical <i>S-</i>Adenosyl-<scp>l</scp>-methionine Enzyme Involved in the Biosynthesis of TDP-<scp>d</scp>-Desosamine
作者:Ping-Hui Szu、Mark W. Ruszczycky、Sei-hyun Choi、Feng Yan、Hung-wen Liu
DOI:10.1021/ja903354k
日期:2009.10.7
Previous genetic and biochemical studies of the biosynthesis of desosamine in S. venezuelae showed that the conversion of TDP-4-amino-4,6-dideoxy-D-glucose (8) to TDP-3-keto-4,6-dideoxy-D-glucose (9) is catalyzed by DesII, which is a member of the radical S-adenosyl-L-methionine (SAM) enzyme superfamily. Here, we report the purification and reconstitution of His(6)-tagged DesII, characterization of its [4Fe-4S]
A chemoenzymatic route to N-acetylglucosamine-1-phosphate analogues: substrate specificity investigations of N-acetylhexosamine 1-kinase
作者:Li Cai、Wanyi Guan、Motomitsu Kitaoka、Jie Shen、Chengfeng Xia、Wenlan Chen、Peng George Wang
DOI:10.1039/b904853g
日期:——
Reports an efficient chemoenzymatic production of an N-acetylhexosamine 1-phophate analogues library by N-acetylhexosamine 1-kinase (NahK) and describes the respective substrate specificity on this enzyme.
Enzyme‐Catalyzed Oxidation of 5‐Hydroxymethylfurfural to Furan‐2,5‐dicarboxylic Acid
作者:Willem P. Dijkman、Daphne E. Groothuis、Marco W. Fraaije
DOI:10.1002/anie.201402904
日期:2014.6.16
Furan‐2,5‐dicarboxylic acid (FDCA) is a biobased platform chemical for the production of polymers. In the past few years, numerous multistep chemical routes have been reported on the synthesis of FDCA by oxidation of 5‐hydroxymethylfurfural (HMF). Recently we identified an FAD‐dependent enzyme which is active towards HMF and related compounds. This oxidase has the remarkable capability of oxidizing