摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

methyl α-D-glucopyranosyl-(1->4)-α-L-rhamnopyranoside | 52327-21-6

中文名称
——
中文别名
——
英文名称
methyl α-D-glucopyranosyl-(1->4)-α-L-rhamnopyranoside
英文别名
α-D-Glc-(1-4)-α-L-Rha-OMe;α-D-Glcp-(1->4)-α-L-RhapOMe;Glc(a1-4)a-Rha1Me;(2R,3R,4S,5S,6R)-2-[(2S,3R,4S,5R,6R)-4,5-dihydroxy-6-methoxy-2-methyloxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol
methyl α-D-glucopyranosyl-(1->4)-α-L-rhamnopyranoside化学式
CAS
52327-21-6
化学式
C13H24O10
mdl
——
分子量
340.328
InChiKey
YTKBKMQYJFNIML-LKQSHFATSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -3.1
  • 重原子数:
    23
  • 可旋转键数:
    4
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    158
  • 氢给体数:
    6
  • 氢受体数:
    10

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    methyl α-D-glucopyranosyl-(1->4)-α-L-rhamnopyranoside对甲苯磺酸溶剂黄146 作用下, 以 N,N-二甲基甲酰胺丙酮 为溶剂, 反应 12.0h, 生成 methyl α-D-glucopyranosyl-(1→4)-2,3-O-isopropylidene-α-L-rhamnopyranoside
    参考文献:
    名称:
    以二糖为潜在的转葡糖基化酶受体底物合成弗氏志贺氏菌特定寡糖的研究
    摘要:
    化学酶策略在发展结构确定的生物活性寡糖的立体和区域选择性合成方面具有巨大潜力。在这里,我们说明了计划的化学酶促途径和工程化的生物催化剂适当组合的潜力,可用于疫苗开发的重要十糖的多步合成。我们报告的分步调查,这导致烯丙基α-的有效化学转化d -glucopyranosyl-(1→4)-α-升-rhamnopyranosyl-(1→3)-2-脱氧-2- trichloroacetamido-β- d -吡喃葡萄糖苷,位点特异性酶α- d的产物-将轻度保护的非天然二糖受体的葡萄糖基化为适合于两端链延长的五糖结构单元。羟基之间的成功区别在于伯醇的选择性酰化和顺式-邻位二醇的缩醛化,然后是可控的过-O-苄基化步骤。此外,我们描述了五糖中间体在[5 + 5]氨基乙基糖苷配糖基十糖的合成中的成功使用,这对应于志贺氏志贺氏菌2a的O特异性多糖的基本重复单元的二聚体。细菌性痢疾。合成并评估了二糖受体的四个类
    DOI:
    10.1021/acs.joc.5b01407
  • 作为产物:
    描述:
    methyl (2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-(1->4)-α-L-rhamnopyranoside 在 palladium on activated charcoal 氢气 作用下, 以 乙醇溶剂黄146 为溶剂, 反应 72.0h, 以90%的产率得到methyl α-D-glucopyranosyl-(1->4)-α-L-rhamnopyranoside
    参考文献:
    名称:
    Synthesis of the Methyl Glycosides of a Di- and Two Trisaccharide Fragments Specific for theShigella flexneriSerotype 2aO-Antigen
    摘要:
    The stereocontrolled synthesis of methyl alpha-D-glucopyranosyl-(1-->4)-alpha-L-rhamnopyranoside (EC, 1), methyl alpha-L-rhamnopyranosyl-(1-->3)-[alpha-D-glucopyra- osyl-(1-->4)]-alpha-L-rhamnopyranoside (B(E)C, 3) and methyl alpha-D-glucopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->3)-2-acetamido-2-deoxy-beta-D-glucopyranoside (ECD, 4) is described; these constitute the methyl glycosides of branched and linear fragments of the O-specific polysaccharide of Shigella flexneri serotype 2a. Emphasis was put on the construction of the 1,2-cis EC glycosidic linkage resulting in the selection of 2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl fluoride (8) as the donor. Condensation of methyl 2,3-O-isopropylidene-4-O-trimethylsilyloside-alpha-L-rhamnopyranoside (11) and 8 afforded the fully protected alpha E-disaccharide 20, as a common intermediate in the synthesis of 1 and 3, together with the corresponding beta E-anomer 21. Deacetalation and regioselective benzoylation of 20, followed by glycosylation with 2,3,4-tri-O-benzoyl-alpha-L-rhamnopyranosyl trichloroacetimidate (15) afforded the branched trisaccharide 25. Full deprotection of 20 and 25 afforded the targets 1 and 3, respectively. The corresponding beta E-disaccharide, namely, methyl beta-D-glucopyranosyl-(1-->4)-a-L-rhamnopyranoside (PEC, 2) was prepared analogously from 21. Two routes to trisaccharide 4 were considered. Route 1 involved the coupling of a precursor to residue E and a disaccharide CD. Route 2 was based on the condensation of an appropriate EC donor and a precursor to residue D. The former route afforded a 1:2 mixture of the alpha E and PE condensation products which could not be separated, neither at this stage, nor after deacetalation. In route 2, the required alpha E-anomer was isolated at the disaccharide stage and transformed into 2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl-(1-->4)-2,3-di-O-benzoyl-alpha-L-rhamnopyranosyl trichloroacetimidate (48) as the EC donor. Methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-beta-D-glucopyran-oside (19) was preferred to its benzylidene analogue as the precursor to residue D. Condensation of 19 and 48 and stepwise deprotection of the glycosylation product afforded the target 4.
    DOI:
    10.1080/07328300008544123
点击查看最新优质反应信息

文献信息

  • CGTase-Catalysed<i>cis</i>-Glucosylation of<scp>L</scp>-Rhamnosides for the Preparation of<i>Shigella flexneri</i>2a and 3a Haptens
    作者:Carole Urbach、Sami Halila、Catherine Guerreiro、Hugues Driguez、Laurence A. Mulard、Sylvie Armand
    DOI:10.1002/cbic.201300597
    日期:2014.1.24
    Sugaring the pill: We report the use of cyclodextrin glucanotransferase (CGTase) for the efficient chemoenzymatic synthesis of α‐glucosylated disaccharides found in the O‐antigens of Shigella flexneri serotypes 2a and 3a. This pathway might be of interest in the development of synthetic carbohydrate‐based vaccine candidates against bacillary dysentery.
    给药片加糖:我们报道了使用环糊精葡聚糖转移酶(CGTase)进行化学酶促合成,有效合成弗氏志贺氏菌血清型2a和3a的O-抗原中的α-葡萄糖基化二糖。该途径可能对开发基于碳水化合物的抗细菌性痢疾的候选疫苗感兴趣。
  • Synthesis of L-Rhamnose and<b><i>N</i></b>-Acetyl-D-Glucosamine Derivatives Entering in the Composition of Bacterial Polysaccharides by Use of Glucansucrases
    作者:Elise Champion、Isabelle André、Laurence A. Mulard、Pierre Monsan、Magali Remaud-Siméon、Sandrine Morel
    DOI:10.1080/07328300902755796
    日期:2009.4.7
    -L-rhamnopyranoside. Disaccharides were obtained with yields going up to 64%. The structural diversity generated as well as the obtained yields appear to be related to enzyme active site architecture, which can be modulated and improved by enzyme engineering. Several of the obtained disaccharides enter in the composition of surface polysaccharides of pathogenic bacteria, among which is Shigella flexneri. Our results
    使用来自糖苷水解酶家族70和13的重组葡聚糖蔗糖,使用蔗糖作为葡糖基供体和N-乙酰基-D-葡糖胺,L-鼠李糖或甲基α-L-鼠李糖吡喃糖苷作为受体进行转葡糖基化反应。根据酶的特异性,合成并表征了各种碳水化合物结构,包括α-D-吡喃葡萄糖基-(1→6)-N-乙酰基-D-葡萄糖胺,α-D-吡喃葡萄糖基-(1→4)-N-乙酰基-D-葡萄糖胺,α-D-吡喃葡萄糖基-(1→1)-β-L-鼠李糖吡喃糖苷,α-D-吡喃葡萄糖基-(1→4)-α-D-吡喃葡萄糖基-(1→1)-β -L-鼠李吡喃糖苷,甲基α-D-吡喃葡萄糖基-(1→4)-α-L-鼠李糖吡喃糖苷和甲基α-D-吡喃葡萄糖基-(1→3)-α-L-鼠李糖吡喃糖苷。获得了双糖,产率高达64%。产生的结构多样性以及获得的产率似乎与酶活性位点结构有关,其可以通过酶工程来调节和改善。所获得的二糖中的几种进入病原细菌的表面多糖的组成,其中包括弗氏志贺氏菌。 我
  • Backman, Irene; Erbing, Bertil; Jansson, Per-Erik, Journal of the Chemical Society. Perkin transactions I, 1988, p. 889 - 898
    作者:Backman, Irene、Erbing, Bertil、Jansson, Per-Erik、Kenne, Lennart
    DOI:——
    日期:——
  • Investigation on the Synthesis of<i>Shigella flexneri</i>Specific Oligosaccharides Using Disaccharides as Potential Transglucosylase Acceptor Substrates
    作者:Stéphane Salamone、Catherine Guerreiro、Emmanuelle Cambon、Jason M. Hargreaves、Nathalie Tarrat、Magali Remaud-Siméon、Isabelle André、Laurence A. Mulard
    DOI:10.1021/acs.joc.5b01407
    日期:2015.11.20
    in the [5 + 5] synthesis of an aminoethyl aglycon-equipped decasaccharide, corresponding to a dimer of the basic repeating unit from the O-specific polysaccharide of Shigella flexneri 2a, a major cause of bacillary dysentery. Four analogues of the disaccharide acceptor were synthesized and evaluated to reach a larger repertoire of O-glucosylation patterns encountered among S. flexneri type-specific
    化学酶策略在发展结构确定的生物活性寡糖的立体和区域选择性合成方面具有巨大潜力。在这里,我们说明了计划的化学酶促途径和工程化的生物催化剂适当组合的潜力,可用于疫苗开发的重要十糖的多步合成。我们报告的分步调查,这导致烯丙基α-的有效化学转化d -glucopyranosyl-(1→4)-α-升-rhamnopyranosyl-(1→3)-2-脱氧-2- trichloroacetamido-β- d -吡喃葡萄糖苷,位点特异性酶α- d的产物-将轻度保护的非天然二糖受体的葡萄糖基化为适合于两端链延长的五糖结构单元。羟基之间的成功区别在于伯醇的选择性酰化和顺式-邻位二醇的缩醛化,然后是可控的过-O-苄基化步骤。此外,我们描述了五糖中间体在[5 + 5]氨基乙基糖苷配糖基十糖的合成中的成功使用,这对应于志贺氏志贺氏菌2a的O特异性多糖的基本重复单元的二聚体。细菌性痢疾。合成并评估了二糖受体的四个类
  • Synthesis of the Methyl Glycosides of a Di- and Two Trisaccharide Fragments Specific for the<i>Shigella flexneri</i>Serotype 2a<i>O</i>-Antigen
    作者:Laurence A. Mulard、Corina Costachel、Philippe J. Sansonetti
    DOI:10.1080/07328300008544123
    日期:2000.1
    The stereocontrolled synthesis of methyl alpha-D-glucopyranosyl-(1-->4)-alpha-L-rhamnopyranoside (EC, 1), methyl alpha-L-rhamnopyranosyl-(1-->3)-[alpha-D-glucopyra- osyl-(1-->4)]-alpha-L-rhamnopyranoside (B(E)C, 3) and methyl alpha-D-glucopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->3)-2-acetamido-2-deoxy-beta-D-glucopyranoside (ECD, 4) is described; these constitute the methyl glycosides of branched and linear fragments of the O-specific polysaccharide of Shigella flexneri serotype 2a. Emphasis was put on the construction of the 1,2-cis EC glycosidic linkage resulting in the selection of 2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl fluoride (8) as the donor. Condensation of methyl 2,3-O-isopropylidene-4-O-trimethylsilyloside-alpha-L-rhamnopyranoside (11) and 8 afforded the fully protected alpha E-disaccharide 20, as a common intermediate in the synthesis of 1 and 3, together with the corresponding beta E-anomer 21. Deacetalation and regioselective benzoylation of 20, followed by glycosylation with 2,3,4-tri-O-benzoyl-alpha-L-rhamnopyranosyl trichloroacetimidate (15) afforded the branched trisaccharide 25. Full deprotection of 20 and 25 afforded the targets 1 and 3, respectively. The corresponding beta E-disaccharide, namely, methyl beta-D-glucopyranosyl-(1-->4)-a-L-rhamnopyranoside (PEC, 2) was prepared analogously from 21. Two routes to trisaccharide 4 were considered. Route 1 involved the coupling of a precursor to residue E and a disaccharide CD. Route 2 was based on the condensation of an appropriate EC donor and a precursor to residue D. The former route afforded a 1:2 mixture of the alpha E and PE condensation products which could not be separated, neither at this stage, nor after deacetalation. In route 2, the required alpha E-anomer was isolated at the disaccharide stage and transformed into 2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl-(1-->4)-2,3-di-O-benzoyl-alpha-L-rhamnopyranosyl trichloroacetimidate (48) as the EC donor. Methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-beta-D-glucopyran-oside (19) was preferred to its benzylidene analogue as the precursor to residue D. Condensation of 19 and 48 and stepwise deprotection of the glycosylation product afforded the target 4.
查看更多