摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

D-葡糖醛酮 | 1854-25-7

中文名称
D-葡糖醛酮
中文别名
2-酮-d-葡萄糖
英文名称
D-glucosone
英文别名
glucosone;D-arabino-hexos-2-ulose;d-Glucoson;D-arabino-hexosulose;Glucoson;2-keto-D-glucose;(3S,4R,5R)-3,4,5,6-tetrahydroxy-2-oxohexanal
D-葡糖醛酮化学式
CAS
1854-25-7;26345-59-5
化学式
C6H10O6
mdl
——
分子量
178.142
InChiKey
DCNMIDLYWOTSGK-HSUXUTPPSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    118-120°C
  • 沸点:
    481.0±45.0 °C(Predicted)
  • 密度:
    1.574±0.06 g/cm3(Predicted)
  • 溶解度:
    甲醇(微溶)、水(微溶)

计算性质

  • 辛醇/水分配系数(LogP):
    -2.9
  • 重原子数:
    12
  • 可旋转键数:
    5
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    115
  • 氢给体数:
    4
  • 氢受体数:
    6

安全信息

  • 安全说明:
    S24/25
  • WGK Germany:
    3
  • 海关编码:
    29144000

SDS

SDS:2d2f3103ace766d0505a74e399d793cf
查看

制备方法与用途

生物活性

2-酮-D-葡萄糖(D-葡萄糖酮)是导致抗生素皮质酮的次级代谢途径中的关键中间体,也是D-葡萄糖转化为D-果糖的中间产物。2-酮-D-葡萄糖存在于各种天然来源中,包括真菌、藻类和贝类。

体外研究

Pyrroloquinoline quinone-dependent 2-酮-D-葡萄糖 (2KG) 还原酶(2KGDH)对2-酮-D-葡萄糖氧化成2-酮-D-古龙酸(2KGA)具有高特异性。大肠杆菌 Pa 的 2KGDH 特别偏好 2KG 作为底物,并氧化了 2KG 的 C-1 位置,这表明该酶是 2KGDH。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    D-葡糖醛酮 在 palladium on activated charcoal 氢气 作用下, 以 为溶剂, 25.0 ℃ 、344.73 kPa 条件下, 反应 15.0h, 生成 果糖
    参考文献:
    名称:
    Convenient, laboratory procedure for reducing d-glucosone to d-fructose
    摘要:
    DOI:
    10.1016/0008-6215(83)88228-7
  • 作为产物:
    描述:
    葡萄糖2-蒽醌磺酸 作用下, 以 sodium hydroxide 为溶剂, 生成 D-葡糖醛酮
    参考文献:
    名称:
    用过氧化氢切割d-阿拉伯糖-己-2-葡萄糖和乙二醛
    摘要:
    摘要在碱性水和44%(w / w)乙醇水溶液(pOH 0.5-5)中,过氧化氢使d-阿拉伯糖-hexos-2-ulose(1)和乙二醛(2)裂解的动力学。在-25至+ 25°的温度范围内进行了研究。1在0.03-1M氢氧化钠中1裂解的竞争反应的相对速率由在25°C和25°C的氧气存在下,在2-蒽醌磺酸将d-葡萄糖氧化为1时过氧化氢的形成速率确定。 40°。1和2的裂解都是相对于过氧化氢的一级裂解,对于低碱度的羟基离子也是裂解的一级裂解。1的裂解速率在pOH〜2.5时达到最大值,而1的竞争反应和2的裂解反应随着氢氧根离子浓度的增加而不断加速。与2不同,化合物1在乙醇-水中的裂解比在水中的裂解更快。1和2的裂解的活化能以及1的竞争反应分别为49、57和65kJ.mol -1。
    DOI:
    10.1016/0008-6215(84)85365-3
点击查看最新优质反应信息

文献信息

  • Integration of Enzymatic and Heterogeneous Catalysis for One-Pot Production of Fructose from Glucose
    作者:Jiankui Sun、Helong Li、Hongzhi Huang、Bo Wang、Ling-Ping Xiao、Guoyong Song
    DOI:10.1002/cssc.201800015
    日期:2018.4.9
    The search for efficient routes for the production of fructose from biomass‐derived glucose is of great interest and importance, as fructose is a highly attractive substrate in the conversion of cellulosic biomass into biofuels and chemicals. In this study, a one‐pot, multistep procedure involving enzyme‐catalyzed oxidation of glucose at C2 and Ni/C‐catalyzed hydrogenation of d‐glucosone at C1 selectively
    寻找从生物质衍生的葡萄糖生产果糖的有效途径非常重要,也很重要,因为果糖是将纤维素生物质转化为生物燃料和化学品的极具吸引力的底物。在这项研究中,一锅多步骤的程序涉及在C2处酶催化的葡萄糖氧化和在C1处Ni / C催化d-葡萄糖苷的氢化选择性地得到果糖,产率为77%。从上游底物(例如α-纤维素和淀粉)开始,通过酶催化和非均相催化的结合,果糖也以相似的效率和选择性产生。该方法构成了一种以有效方式从生物质衍生的底物制备果糖的新方法。
  • Synthetic routes to N-(1-deoxy-d-fructos-1-yl)amino acids by way of reductive amination of hexos-2-uloses
    作者:Donald J. Walton、John D. McPherson、Torsten Hvidt、Walter A. Szarek
    DOI:10.1016/0008-6215(87)80273-2
    日期:1987.9
    overcome in the second route, which involved reductive amination of 2,3:4,5-di- O -isopropylidene- aldehydo -β- d - arabino -hexos-2-ulo-2,6-pyranose; following a deblocking step, N -(1-deoxy- d -fructos-1-yl) derivatives of the aforementioned amino acids were obtained in yields which were at least double those reported for the current procedure involving the reaction of an amino acid with d -glucose, and
    摘要描述了两种合成1-缬氨酸,1-亮氨酸,1-甲硫氨酸,1-苯丙氨酸和6-氨基己酸的N-(1-脱氧d-果糖-1-基)衍生物的途径。一种途径涉及在氰基硼氢化钠存在下对d-阿拉伯糖-己基-2-己糖的还原胺化。产量受到难以去除的大量N-(1-脱氧己糖醇-1-基)氨基酸形成的限制。在第二种方法中克服了这一缺点,该方法涉及2,3:4,5-二-O-异亚丙基-醛-β-d-阿拉伯糖-己二-2-ulo-2,6-吡喃糖的还原胺化。在去封闭步骤之后,获得上述氨基酸的N-(1-脱氧-d-果糖-1-基)衍生物,其收率至少是目前涉及氨基酸与d的反应的报道方法的两倍。 -葡萄糖,
  • Determination of Glyceraldehyde Formed in Glucose Degradation and Glycation
    作者:Teruyuki USUI、Miku YOSHINO、Hirohito WATANABE、Fumitaka HAYASE
    DOI:10.1271/bbb.70078
    日期:2007.9.23
    Glyceraldehyde (GLA) was determined in glucose degradation and glycation. GLA was detected as a decahydroacridine-1,8-dione derivative on reversed phase HPLC using cyclohexane-1,3-dione derivatizing reagent. The glucose-derived GLA level was higher than the glycation-derived GLA level, because GLA was converted to intermediates and advanced glycation end products (AGE) in glycation. GLA was also generated from 3-deoxyglucosone and glucosone as intermediates of glucose degradation and glycation. This study suggests that glyceraldehyde is generated by hyperglycemia in diabetes, and that it is also formed in medicines such as peritoneal dialysis solution.
    甘油醛(GLA)在葡萄糖降解和糖化中被测定。GLA在反相高效液相色谱中作为十氢吡啶-1,8-二酮衍生物被检测,使用了环己烯-1,3-二酮衍生化试剂。葡萄糖衍生的GLA水平高于糖化衍生的GLA水平,因为在糖化过程中,GLA被转化为中间产物和高级糖化终产物(AGE)。GLA还可以从3-脱氧葡萄糖酮和葡萄糖酮作为葡萄糖降解和糖化的中间产物生成。本研究表明,甘油醛是在糖尿病的高血糖状态下生成的,并且在某些药物如腹膜透析液中也会形成。
  • Identification and Determination of α-Dicarbonyl Compounds Formed in the Degradation of Sugars
    作者:Teruyuki USUI、Satoshi YANAGISAWA、Mio OHGUCHI、Miku YOSHINO、Risa KAWABATA、Junko KISHIMOTO、Yumi ARAI、Kaoru AIDA、Hirohito WATANABE、Fumitaka HAYASE
    DOI:10.1271/bbb.70229
    日期:2007.10.23
    The α-dicarbonyl compounds formed in the degradation of glucose and fructose were analyzed by HPLC using 2,3-diaminonaphthalene as derivatizing reagent, and identified as glucosone (GLUCO), 3-deoxyglucosone (3DG), 3-deoxyxylosone (3DX), tetrosone (TSO), triosone (TRIO), 3-deoxytetrosone (3DT), glyoxal (GO), and methylglyoxal (MGO). The results suggest that α-dicarbonyl compounds were formed from glucose via non-oxidative 3-deoxyglucosone formation and oxidative glucosone formation in glucose degradation. In addition, TRIO, GO, and MGO were also formed from glyceraldehyde as intermediate. The α-dicarbonyl compounds might be formed from glucose via these pathways in diabetes.
    在葡萄糖和果糖降解过程中形成的α-二羰基化合物通过高效液相色谱(HPLC)使用2,3-二氨基萘作为衍生试剂进行分析,识别为葡萄糖苷(GLUCO)、3-脱氧葡萄糖苷(3DG)、3-脱氧木糖苷(3DX)、四碳糖苷(TSO)、三碳糖苷(TRIO)、3-脱氧四碳糖苷(3DT)、乙二醛(GO)和甲乙二醛(MGO)。结果表明,在葡萄糖降解过程中,α-二羰基化合物是通过非氧化的3-脱氧葡萄糖苷形成和氧化的葡萄糖苷形成而产生的。此外,TRIO、GO和MGO也作为中间体从甘油醛中形成。这些α-二羰基化合物可能通过这些途径在糖尿病中由葡萄糖形成。
  • Multistep Ultrahigh Performance Liquid Chromatography/Tandem Mass Spectrometry Analysis for Untargeted Quantification of Glycating Activity and Identification of Most Relevant Glycation Products
    作者:Stefan Mittelmaier、Monika Pischetsrieder
    DOI:10.1021/ac2025706
    日期:2011.12.15
    The use of advanced glycation end-products (AGEs) as biomarkers for diagnosis and clinical studies is still hampered by insufficient knowledge on clinically relevant structures formed from precursors associated with defined disease states. The present study conducted untargeted analysis of the glycating activity of AGE-precursors by ultrahigh performance liquid chromatography/tandem mass spectrometry multiple reaction monitoring (UHPLC/MSMS-MRM), monitoring the loss of a nonapeptide as the glycation target. Thus, the glycating activities of seven important AGE-precursors were determined (glucose 13% and the reactive carbonyl compounds glucosone 39%, 3-deoxyglucosone 15%, 3-deoxygalactosone 26%, 3,4-dideoxyglucosone-3-ene 79%, methylglyoxal 94%, and glyoxal 97% peptide loss; 12 h/37 °C). Furthermore, UHPLC/MSMS with simultaneous precursor ion scan and information-dependent acquisition of enhanced resolution spectra and subsequent product ion scan was applied for untargeted analysis of the major AGE-structures derived from various AGE-precursors. The 20 most important modifications could be assigned to 8 AGE-structures previously reported in the literature. Seven loosely bound AGEs not yet covered by conventional methods were detected and assigned to hemiaminals. Five AGE structures did not match any known products. The method can be applied to analyze glycating activity and AGE-structures formed from various other precursors under defined reaction conditions, supporting the selection and evaluation of diagnostic AGE-markers for clinical studies.
    使用高级糖基化终产物(AGEs)作为诊断和临床研究的生物标志物仍受到对与特定疾病状态相关的前体形成的临床相关结构了解不足的限制。本研究通过超高效液相色谱/串联质谱多反应监测(UHPLC/MSMS-MRM)进行非靶向分析,监测非肽的损失作为糖基化靶标,从而评估AGE前体的糖基化活性。因此,确定了七种重要AGE前体的糖基化活性(葡萄糖13%和反应性羰基化合物葡萄糖酮39%、3-去氧葡萄糖酮15%、3-去氧半乳糖酮26%、3,4-去氧葡萄糖酮-3-烯79%、甲基乙二醛94%和乙醛97%肽损失;12小时/37°C)。此外,使用UHPLC/MSMS的同时前体离子扫描和信息依赖获取的增强分辨率光谱及后续产物离子扫描对来自不同AGE前体的主要AGE结构进行非靶向分析。20个最重要的修饰可归属于文献中先前报道的8种AGE结构。检测到7种传统方法尚未覆盖的松散结合AGE,并将其归属于半氨基醇。五种AGE结构与任何已知产品不匹配。该方法可用于分析在特定反应条件下由各种其他前体形成的糖基化活性和AGE结构,支持临床研究中诊断AGE标志物的选择和评估。
查看更多