This paper describes a second-generation synthesis of an antitumor tetrahydropyran ( THP) acetogenin, pyragonicin. The key step involved an olefin cross-metathesis between the THP segment and the terminal gamma-lactone residue. The coupling reaction in the presence of Grubbs' second-generation catalyst resulted in an unseparable mixture of a desired coupling product and its one-carbon eliminated product while the use of Grubbs' first-generation catalyst afforded the former exclusively. A novel MOM-migrating reaction found in a cyclization reaction is also discussed.
This paper describes a second-generation synthesis of an antitumor tetrahydropyran ( THP) acetogenin, pyragonicin. The key step involved an olefin cross-metathesis between the THP segment and the terminal gamma-lactone residue. The coupling reaction in the presence of Grubbs' second-generation catalyst resulted in an unseparable mixture of a desired coupling product and its one-carbon eliminated product while the use of Grubbs' first-generation catalyst afforded the former exclusively. A novel MOM-migrating reaction found in a cyclization reaction is also discussed.
This paper describes a second-generation synthesis of an antitumor tetrahydropyran ( THP) acetogenin, pyragonicin. The key step involved an olefin cross-metathesis between the THP segment and the terminal gamma-lactone residue. The coupling reaction in the presence of Grubbs' second-generation catalyst resulted in an unseparable mixture of a desired coupling product and its one-carbon eliminated product while the use of Grubbs' first-generation catalyst afforded the former exclusively. A novel MOM-migrating reaction found in a cyclization reaction is also discussed.