摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

trans-Sinapate | 530-59-6

中文名称
——
中文别名
——
英文名称
trans-Sinapate
英文别名
4-[(E)-2-carboxyethenyl]-2,6-dimethoxyphenolate
trans-Sinapate化学式
CAS
530-59-6
化学式
C11H11O5-
mdl
——
分子量
223.2
InChiKey
PCMORTLOPMLEFB-ONEGZZNKSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    ~202 °C
  • 沸点:
    285.61°C (rough estimate)
  • 密度:
    1.1478 (rough estimate)
  • 溶解度:
    H2O:微溶
  • LogP:
    0.997 (est)

计算性质

  • 辛醇/水分配系数(LogP):
    2.1
  • 重原子数:
    16
  • 可旋转键数:
    3
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.18
  • 拓扑面积:
    78.8
  • 氢给体数:
    1
  • 氢受体数:
    5

安全信息

  • 危险品标志:
    Xi
  • 安全说明:
    S26,S36,S37/39
  • 危险类别码:
    R36/37/38
  • WGK Germany:
    3
  • 海关编码:
    2918990090
  • 危险品运输编号:
    NONH for all modes of transport
  • 危险标志:
    GHS07
  • 危险性描述:
    H315,H319,H335
  • 危险性防范说明:
    P261,P305 + P351 + P338

SDS

SDS:1a01131ea7cba0286b842e8314f93a5c
查看

制备方法与用途

生物活性

Sinapinic acid(没食子酸)是一种天然存在的小羟基肉桂酸,属于苯基丙烷类化合物。它常被用作MALDI质谱中的基质,并作为HDAC抑制剂,IC50为2.27 mM。此外,它还能抑制ACE-1活性。

靶点
Target Value
HDAC
ACE1
体外研究

Sinapinic acid作为HDAC的抑制剂,其IC50值为2.27 mM。此外,它还能够抑制ACE-I活性。在HeLa细胞中,Sinapinic acid通过抑制HDAC活性发挥作用,在72小时时对HeLa和HT29细胞分别表现出0.91 ± 0.02 mM和1.6 ± 0.02 mM的IC50值,并诱导这些癌细胞凋亡。

体内研究

在大鼠中,给予Sinapinic acid(每日口服5或25 mg/kg共4周),可以提高血清雌二醇浓度;减少胰岛素抵抗、甘油三酯和总胆固醇水平;并有利地影响抗氧化能力参数(如降低谷胱甘肽、超氧化物歧化酶)及氧化损伤。

化学性质

白色粉末,溶于三氯甲烷、乙醚和甲醇。来源于菜粕。

用途

用于含量测定、鉴定以及药理实验等。

反应信息

  • 作为反应物:
    描述:
    trans-Sinapatepotassium carbonate 、 lithium hydroxide 作用下, 以 四氢呋喃N,N-二甲基甲酰胺 为溶剂, 反应 29.0h, 生成 (E)-3-(4-((5-hydroxypentyl)oxy)-3,5-dimethoxyphenyl) acrylic acid
    参考文献:
    名称:
    由赖氨酰氧化酶引发的一氧化氮供体胡椒长明衍生物的设计、合成和生物学研究作为抗三阴性乳腺癌药物
    摘要:
    一氧化氮(NO)是一种重要的气体信使分子,具有广泛的生物学功能。高浓度的NO具有良好的抗肿瘤作用,被认为是癌症研究的热点之一,但由于其气态、半衰期短(秒)和反应活性高,其直接应用受到限制。赖氨酰氧化酶(LOX)是一种铜依赖性胺氧化酶,负责胶原蛋白和弹性蛋白之间的共价键结合,促进肿瘤细胞侵袭和转移。 LOX 在三阴性乳腺癌 (TNBC) 中的过度表达使其成为 TNBC 治疗的有吸引力的靶点。本文基于天然衍生的荜茇明(PL)骨架设计并合成了新型NO供体前药分子,该分子可以被LOX选择性激活,释放高浓度的NO和PL衍生物,两者在TNBC治疗中发挥协同作用。其中,该化合物在高侵袭性TNBC细胞(MDA-MB-231)中选择性释放NO,也被确认为潜在的TNBC细胞系抑制剂,抑制浓度为2.274 μM。分子对接结果表明与LOX蛋白具有很强的选择性结合亲和力。
    DOI:
    10.1016/j.fitote.2024.106091
  • 作为产物:
    描述:
    3,5-二甲氧基-4-羟基肉桂酸硫酸 作用下, 以 甲醇 为溶剂, 以94.4 %的产率得到trans-Sinapate
    参考文献:
    名称:
    由赖氨酰氧化酶引发的一氧化氮供体胡椒长明衍生物的设计、合成和生物学研究作为抗三阴性乳腺癌药物
    摘要:
    一氧化氮(NO)是一种重要的气体信使分子,具有广泛的生物学功能。高浓度的NO具有良好的抗肿瘤作用,被认为是癌症研究的热点之一,但由于其气态、半衰期短(秒)和反应活性高,其直接应用受到限制。赖氨酰氧化酶(LOX)是一种铜依赖性胺氧化酶,负责胶原蛋白和弹性蛋白之间的共价键结合,促进肿瘤细胞侵袭和转移。 LOX 在三阴性乳腺癌 (TNBC) 中的过度表达使其成为 TNBC 治疗的有吸引力的靶点。本文基于天然衍生的荜茇明(PL)骨架设计并合成了新型NO供体前药分子,该分子可以被LOX选择性激活,释放高浓度的NO和PL衍生物,两者在TNBC治疗中发挥协同作用。其中,该化合物在高侵袭性TNBC细胞(MDA-MB-231)中选择性释放NO,也被确认为潜在的TNBC细胞系抑制剂,抑制浓度为2.274 μM。分子对接结果表明与LOX蛋白具有很强的选择性结合亲和力。
    DOI:
    10.1016/j.fitote.2024.106091
点击查看最新优质反应信息

文献信息

  • Role of a GDSL lipase‐like protein as sinapine esterase in Brassicaceae
    作者:Kathleen Clauß、Alfred Baumert、Manfred Nimtz、Carsten Milkowski、Dieter Strack
    DOI:10.1111/j.1365-313x.2007.03374.x
    日期:2008.3
    Summary

    The seeds of most members of the Brassicaceae accumulate high amounts of sinapine (sinapoylcholine) that is rapidly hydrolyzed during early stages of seed germination. One of three isoforms of sinapine esterase activity (BnSCE3) has been isolated from Brassica napus seedlings and subjected to trypsin digestion and spectrometric sequencing. The peptide sequences were used to isolate BnSCE3 cDNA, which was shown to contain an open reading frame of 1170 bp encoding a protein of 389 amino acids, including a leader peptide of 25 amino acids. Sequence comparison identified the protein as the recently cloned BnLIP2, i.e. a GDSL lipase‐like protein, which displays high sequence identity to a large number of corresponding plant proteins, including four related Arabidopsis lipases. The enzymes belong to the SGNH protein family, which use a catalytic triad of Ser‐Asp‐His, with serine as the nucleophile of the GDSL motif. The corresponding B. napus and Arabidopsis genes were heterologously expressed in Nicotiana benthamiana leaves and proved to confer sinapine esterase activity. In addition to sinapine esterase activity, the native B. napus protein (BnSCE3/BnLIP2) showed broad substrate specificity towards various other choline esters, including phosphatidylcholine. This exceptionally broad substrate specificity, which is common to a large number of other GDSL lipases in plants, hampers their functional analysis. However, the data presented here indicate a role for the GDSL lipase‐like BnSCE3/BnLIP2 as a sinapine esterase in members of the Brassicaceae, catalyzing hydrolysis of sinapine during seed germination, leading, via 1‐O‐sinapoyl‐β‐glucose, to sinapoyl‐l‐malate in the seedlings.

    摘要十字花科(Brassicaceae)大多数成员的种子中积累了大量的西那平(西那平胆碱),这些物质在种子萌发的早期阶段被迅速水解。从甘蓝型油菜幼苗中分离出了西奈碱酯酶活性的三种异构体之一(BnSCE3),并对其进行了胰蛋白酶消化和光谱测序。肽序列被用于分离 BnSCE3 cDNA,结果显示该 cDNA 包含一个 1170 bp 的开放阅读框,编码一个 389 个氨基酸的蛋白质,其中包括一个 25 个氨基酸的领导肽。通过序列比对,确定该蛋白为最近克隆的 BnLIP2,即一种 GDSL 脂肪酶样蛋白,它与大量相应的植物蛋白(包括四种相关的拟南芥脂肪酶)具有很高的序列同一性。这些酶属于 SGNH 蛋白家族,其催化三元组为 Ser-Asp-His,其中丝氨酸是 GDSL 动机的亲核体。相应的油菜和拟南芥基因被异源表达在烟草叶片中,并被证明具有窦氨酸酯酶活性。除了西那平酯酶活性外,原生的油菜蛋白(BnSCE3/BnLIP2)还对其他各种胆碱酯(包括磷脂酰胆碱)表现出广泛的底物特异性。这种异常广泛的底物特异性是植物中大量其他 GDSL 脂肪酶的共性,阻碍了对它们的功能分析。然而,本文提供的数据表明,类似于 GDSL 脂肪酶的 BnSCE3/BnLIP2 在十字花科植物中扮演着一种窦氨酸酯酶的角色,在种子萌发过程中催化窦氨酸的水解,通过 1-O-窦酰基-β-葡萄糖,在幼苗中产生窦酰基-l-苹果酸。
  • Characterization of Two cDNA Clones Which EncodeO-Methyltransferases for the Methylation of both Flavonoid and Phenylpropanoid Compounds
    作者:Antonin Gauthier、Patrick J. Gulick、Ragai K. Ibrahim
    DOI:10.1006/abbi.1997.0554
    日期:1998.3
    Enzymatic O-methylation of phenylpropanoid and flavonoid compounds is believed to be catalyzed by distinct classes of O-methyltransferases [EC 2.1.1.6x]. The O-methylated derivatives of phenylpropanoids and flavonoids play an important role in lignification and as antimicrobial compounds, respectively. Two cDNA clones, OMT1 and OMT2, which differ in three amino acid residues were isolated and characterized
    苯丙烷和类黄酮化合物的酶促O-甲基化被认为是由不同种类的O-甲基转移酶催化的[EC 2.1.1.6x]。苯丙烷和类黄酮的O-甲基化衍生物分别在木质化和抗菌化合物中起重要作用。从半水生美洲杂草(Saxifragaceae)的半水淡水杂草中分离并鉴定了两个在三个氨基酸残基上不同的cDNA克隆OMT1和OMT2。这两个新的cDNA克隆编码的酶可催化类黄酮苷元木犀草素和槲皮素的3'-O-甲基化,尽管它们也分别催化苯丙酸类咖啡因和5-羟基阿魏酸的3 / 5-O-甲基化。两种重组蛋白均从大肠杆菌表达系统中部分纯化,并使用两种类黄酮和两种苯基丙烷为底物比较了它们的动力学参数。尽管两种基因产物甲基化咖啡酸和5-羟基阿魏酸的程度相似,但它们对类黄酮化合物的亲和力和三倍增长了四到六倍。OMT1的基因产物以比OMT2更高的速率接受黄酮类底物木犀草素和槲皮素进行甲基化,这是由其Vmax值和周转率增加了2到3倍表明
  • Molecular regulation of sinapate ester metabolism in <i>Brassica napus</i>: expression of genes, properties of the encoded proteins and correlation of enzyme activities with metabolite accumulation
    作者:Carsten Milkowski、Alfred Baumert、Diana Schmidt、Lilian Nehlin、Dieter Strack
    DOI:10.1111/j.1365-313x.2004.02036.x
    日期:2004.4
    Summary

    Members of the Brassicaceae family accumulate specific sinapate esters, i.e. sinapoylcholine (sinapine), which is considered as a major antinutritive compound in seeds of important crop plants like Brassica napus, and sinapoylmalate, which is implicated in UV‐B tolerance in leaves. We have studied the molecular regulation of the sinapate ester metabolism in B. napus, and we describe expression of genes, some properties of the encoded proteins and profiles of the metabolites and enzyme activities. The cloned cDNAs encoding the key enzymes of sinapine biosynthesis, UDP‐glucose (UDP‐Glc):B. napus sinapate glucosyltransferase (BnSGT1) and sinapoylglucose:B. napus choline sinapoyltransferase (BnSCT), were functionally expressed. BnSGT1 belongs to a subgroup of plant GTs catalysing the formation of 1‐O‐hydroxycinnamoyl‐β‐d‐glucoses. BnSCT is another member of serine carboxypeptidase‐like (SCPL) family of acyltransferases. The B. napus genome contains at least two SGT and SCT genes, each derived from its progenitors B. oleracea and B. rapa. BnSGT1 and BnSCT activities are subjected to pronounced transcriptional regulation. BnSGT1 transcript level increases throughout early stages of seed development until the early cotyledonary stage, and stays constant in later stages. The highest level of BnSGT1 transcripts is reached in 2‐day‐old seedlings followed by a dramatic decrease. In contrast, expression of BnSCT is restricted to developing seeds. Regulation of gene expression at the transcript level seems to be responsible for changes of BnSGT1 and BnSCT activities during seed and seedling development of B. napus. Together with sinapine esterase (SCE) and sinapoylglucose:malate sinapoyltransferase (SMT), activities of BnSGT1 and BnSCT show a close correlation with the accumulation kinetics of the corresponding metabolites.

    摘要十字花科(Brassicaceae)植物积累特定的莽草酸酯,即莽草酰胆碱(sinapoylcholine,sinapine)和莽草酰基丙二酸酯(sinapoylmalate),前者被认为是十字花科(Brassica)等重要作物种子中的主要抗营养性化合物,后者则与叶片的紫外线-B耐受性有关。我们研究了油菜中芒硝酯代谢的分子调控,描述了基因的表达、编码蛋白的一些特性以及代谢产物和酶活性的概况。克隆的cDNA编码了油菜碱生物合成的关键酶--UDP-葡萄糖(UDP-Glc):油菜碱式糖基转移酶(BnSGT1)和油菜碱式酰葡萄糖:油菜胆碱酰基转移酶(BnSCT)。BnSGT1 属于催化 1-O-hydroxycinnamoyl-β-d-glucose 形成的植物 GTs 亚群。BnSCT 是丝氨酸羧肽酶(SCPL)酰基转移酶家族的另一个成员。油菜基因组中至少含有两个 SGT 和 SCT 基因,分别来自其祖先 B. oleracea 和 B. rapa。BnSGT1 和 BnSCT 的活性受到明显的转录调控。BnSGT1 的转录水平在种子发育的整个早期阶段都在增加,直到子叶早期阶段,并在后期阶段保持不变。BnSGT1 转录本的最高水平在 2 天大的幼苗期达到,随后急剧下降。相比之下,BnSCT 的表达仅限于发育中的种子。转录本水平的基因表达调控似乎是导致 BnSGT1 和 BnSCT 活性在油菜种子和幼苗发育过程中发生变化的原因。BnSGT1 和 BnSCT 的活性与西奈平酯酶(SCE)和西奈平葡萄糖:苹果酸西奈平基转移酶(SMT)一起,显示出与相应代谢物的积累动力学密切相关。
  • Identification of Glucosyltransferase Genes Involved in Sinapate Metabolism and Lignin Synthesis in Arabidopsis
    作者:Eng-Kiat Lim、Yi Li、Adrian Parr、Ros Jackson、David A. Ashford、Dianna J. Bowles
    DOI:10.1074/jbc.m007263200
    日期:2001.2
    identified. Combining sequence information in the Arabidopsis genomic data base with biochemical data from screening the activity of recombinant proteins in vitro, we have now identified five gene sequences encoding enzymes that can glucosylate sinapic acid, sinapyl alcohol, and their related phenylpropanoids. The data provide a foundation for future understanding and manipulation of sinapate metabolism
    芥子酸是十字花科中的主要苯基丙烷,在两个不同的代谢途径中提供中间体,从而导致芥子酸酯和木质素合成。葡萄糖基转移酶在这些中间体的形成中起关键作用,通过产生高能化合物1-O-芥子酰葡萄糖导致芥子酸苹果酸酯和芥子碱胆碱,或通过产生芥子醇-4-O-葡糖苷,可能导致丁香基单元在木质素中发现。尽管已经认识了这些葡糖基转移酶的重要性超过20年,但尚未鉴定出它们的相应基因。将拟南芥基因组数据库中的序列信息与通过体外筛选重组蛋白活性而获得的生化数据相结合,我们现在已经确定了五个编码酶的基因序列,这些酶可以使芥子酸,芥子醇及其相关的苯基丙烷类糖基化。这些数据为将来了解和操纵拟南芥中的芥子酸酯代谢和木质素生物学奠定了基础。
  • A Novel Glucosylation Reaction on Anthocyanins Catalyzed by Acyl-Glucose–Dependent Glucosyltransferase in the Petals of Carnation and Delphinium  
    作者:Yuki Matsuba、Nobuhiro Sasaki、Masayuki Tera、Masachika Okamura、Yutaka Abe、Emi Okamoto、Haruka Nakamura、Hisakage Funabashi、Makoto Takatsu、Mikako Saito、Hideaki Matsuoka、Kazuo Nagasawa、Yoshihiro Ozeki
    DOI:10.1105/tpc.110.077487
    日期:2010.11.24
    Abstract

    Glucosylation of anthocyanin in carnations (Dianthus caryophyllus) and delphiniums (Delphinium grandiflorum) involves novel sugar donors, aromatic acyl-glucoses, in a reaction catalyzed by the enzymes acyl-glucose–dependent anthocyanin 5(7)-O-glucosyltransferase (AA5GT and AA7GT). The AA5GT enzyme was purified from carnation petals, and cDNAs encoding carnation Dc AA5GT and the delphinium homolog Dg AA7GT were isolated. Recombinant Dc AA5GT and Dg AA7GT proteins showed AA5GT and AA7GT activities in vitro. Although expression of Dc AA5GT in developing carnation petals was highest at early stages, AA5GT activity and anthocyanin accumulation continued to increase during later stages. Neither Dc AA5GT expression nor AA5GT activity was observed in the petals of mutant carnations; these petals accumulated anthocyanin lacking the glucosyl moiety at the 5 position. Transient expression of Dc AA5GT in petal cells of mutant carnations is expected to result in the transfer of a glucose moiety to the 5 position of anthocyanin. The amino acid sequences of Dc AA5GT and Dg AA7GT showed high similarity to glycoside hydrolase family 1 proteins, which typically act as β-glycosidases. A phylogenetic analysis of the amino acid sequences suggested that other plant species are likely to have similar acyl-glucose–dependent glucosyltransferases.

    摘要

    石竹(Dianthus caryophyllus)和翠雀花(Delphinium grandiflorum)中花青素的葡萄糖化涉及新型糖基供体,芳香基酰基葡萄糖,由酰基葡萄糖依赖的花青素5(7)-O-葡萄糖基转移酶(AA5GT和AA7GT)催化反应。从石竹花瓣中纯化了AA5GT酶,并分离了编码石竹Dc AA5GT和翠雀花同源物Dg AA7GT的cDNA。重组的Dc AA5GT和Dg AA7GT蛋白在体外表现出AA5GT和AA7GT活性。虽然Dc AA5GT在石竹花瓣的发育早期表达最高,但AA5GT活性和花青素积累在后期仍然持续增加。在突变石竹花瓣中,既没有观察到Dc AA5GT表达,也没有AA5GT活性;这些花瓣积累了缺乏5位葡萄糖基的花青素。预计在突变石竹花瓣细胞中短暂表达Dc AA5GT将导致将葡萄糖基转移至花青素的5位。Dc AA5GT和Dg AA7GT的氨基酸序列与糖苷水解酶家族1蛋白的高度相似,这些蛋白通常作为β-葡萄糖苷酶。氨基酸序列的系统发育分析表明,其他植物物种可能具有类似的酰基葡萄糖依赖性葡萄糖转移酶。

查看更多

相关功能分类