Diastereoselective Silacyclopropanations of Functionalized Chiral Alkenes
摘要:
Lithium reduction of di-tert-butyldichlorosilane and thermal silylene transfer (105-125 degrees C) are complementary methods for the highly diastereoselective silacyclopropanations of a range of functionalized chiral olefins to afford complex silacycles. We have shown that functionalized cyclohexenes, cyclopentenes, norbornenes, and 1,1-disubstituted alkenes undergo silacyclopropanation with excellent diastereoselectivity (92:8 to >99:1). Our results demonstrate that steric interactions, rather than oxygen-directing effects, control the approach of the silylene or silylenoid intermediate to the olefin. We believe that the sterically demanding nature of the di-tert-butylsilylene species prevents coordination to the oxygen functionality. Thermal silylene transfer conditions exhibit broad functional group tolerance; the elevated temperatures for silylene transfer, however, cannot be employed for the silacyclopropanation of substituted cyclohexenes and 1,1-disubstituted alkenes. Elaboration of the resulting functionalized silacyclopropanes provides an efficient route to polyoxygenated products.
Diastereoselective Silacyclopropanations of Functionalized Chiral Alkenes
摘要:
Lithium reduction of di-tert-butyldichlorosilane and thermal silylene transfer (105-125 degrees C) are complementary methods for the highly diastereoselective silacyclopropanations of a range of functionalized chiral olefins to afford complex silacycles. We have shown that functionalized cyclohexenes, cyclopentenes, norbornenes, and 1,1-disubstituted alkenes undergo silacyclopropanation with excellent diastereoselectivity (92:8 to >99:1). Our results demonstrate that steric interactions, rather than oxygen-directing effects, control the approach of the silylene or silylenoid intermediate to the olefin. We believe that the sterically demanding nature of the di-tert-butylsilylene species prevents coordination to the oxygen functionality. Thermal silylene transfer conditions exhibit broad functional group tolerance; the elevated temperatures for silylene transfer, however, cannot be employed for the silacyclopropanation of substituted cyclohexenes and 1,1-disubstituted alkenes. Elaboration of the resulting functionalized silacyclopropanes provides an efficient route to polyoxygenated products.
Metal-Catalyzed Di-<i>tert-</i>butylsilylene Transfer: Synthesis and Reactivity of Silacyclopropanes
作者:Jelena Ćiraković、Tom G. Driver、K. A. Woerpel
DOI:10.1021/jo0355505
日期:2004.6.1
developed as a mild, operationally simple, functional-group-tolerant method for silacyclopropane formation. Di-tert-butylsilylene was transferred from cyclohexene silacyclopropane 1 to an alkene through the use of a metal salt. Silacyclopropanation occurred at temperatures as low as −27 °C when AgOTf or AgOC(O)CF3 were used as catalysts. Complex silacyclopropanes were formed stereospecifically and