arylation of 2-iodoalkylarenes with diphenylzinc selectively at the γ C–H bond of the alkyl side chain. Several lines of evidence suggest that the iron catalyst reacts with the aryl iodide moiety of the substrate to generate an aryliron intermediate that behaves in a radical manner and cleaves the aliphaticC–H bond through1,5-hydrogentransfer; the resulting alkyliron intermediate undergoes reductive elimination
Allylic alcohols can be used directly for the palladium(0)-catalyzed allylation of aryl- and alkenylboronic acids with a wide variety of functional groups. A triphenylphosphine-ligated palladium catalyst turns out to be most effective for the cross-coupling reaction and its low loading (less than 1 mol%) leads to formation of the coupling product in high yield. The Lewis acidity of the organoboron
Nickel-Catalyzed Direct Coupling of Allylic Alcohols with Organoboron Reagents
作者:Gaonan Wang、Yi Gan、Yuanhong Liu
DOI:10.1002/cjoc.201800237
日期:2018.10
The direct coupling of allylicalcohols with arylboronic acids or their derivatives catalyzed by Ni(cod)2 in the presence of a catalytic amount of base has been developed. A wide variety of allylic substrates or arylboronic acids turned out to be applicable to this catalytic system. The present method does not require the use of ligands for stabilizing the nickel catalyst in most cases or additional
Palladium(0)-catalyzed direct cross-coupling reaction of allyl alcohols with aryl- and vinyl-boronic acidsElectronic supplementary information (ESI) available: spectral data of compounds. See http://www.rsc.org/suppdata/cc/b4/b402256d/
An efficient cross-coupling reaction of N-allylicsulfonimides with organozincreagents has been developed. In the presence of 1 mol-% of Pd 2 (dba) 3 , a range of N-allylicsulfonimides smoothly couple with various organozincreagents at roomtemperature to give the corresponding (E)-alkene products in moderate to excellent yields and with good to exclusive α-selectivity. It is noteworthy that allyl