摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(2R,3R)-3-chloro-2,6-dimethyl-5-heptene-1,2-diol | 204918-27-4

中文名称
——
中文别名
——
英文名称
(2R,3R)-3-chloro-2,6-dimethyl-5-heptene-1,2-diol
英文别名
(2R,3R)-3-chloro-2,6-dimethylhept-5-ene-1,2-diol
(2R,3R)-3-chloro-2,6-dimethyl-5-heptene-1,2-diol化学式
CAS
204918-27-4
化学式
C9H17ClO2
mdl
——
分子量
192.686
InChiKey
PIHLOHRPKXYCKP-RKDXNWHRSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    36-37 °C
  • 沸点:
    315.349±42.00 °C(Press: 760.00 Torr)(predicted)
  • 密度:
    1.087±0.06 g/cm3(Temp: 25 °C; Press: 760 Torr)(predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.7
  • 重原子数:
    12
  • 可旋转键数:
    4
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.78
  • 拓扑面积:
    40.5
  • 氢给体数:
    2
  • 氢受体数:
    2

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    Total Syntheses of the Cytotoxic Marine Natural Product, Aplysiapyranoid C1
    摘要:
    The first total syntheses of the cytotoxic marine natural product, aplysiapyranoid C, 1c, are reported. The Wittig reaction of 4-methyl-3-pentenyltriphenylphosphorane with the THP ether of hydroxyacetone gave in 88% yield the Z-alkene 4 which was hydrolyzed to the alcohol 5 in 72% yield. Sharpless asymmetric epoxidation of 5 afforded the epoxy alcohol 6 in 91% yield and 81% ee, Opening of the epoxide of 6 with ammonium chloride in DMSO gave in 76% yield the chloro diol 7 which was converted to the primary TBS ether 8 in 95% yield. Opening of the epoxy alcohol 6 with HCl and Ti(OiPr)(4) afforded the desired chloro diol 7 as the minor product along with the rearranged chloromethyl diol 9. This compound is presumably formed by opening of the protonated epoxide to give a butenyl cation which rearranges to the cyclopropylcarbinyl cation and is then trapped by chloride ion at the unsubstituted cyclopropyl carbon, regenerating the alkene. Cyclization of the TBS ether 8 with tetrabromocyclohexadienone (TBCO) afforded a mixture of all four possible cyclization products, the desired tetrahydropyrans 11a,b and the tetrahydrofurans 12a,b with the former being isolated in 70% yield. Hydrolysis of the TBS ether afforded the primary alcohols from which the desired isomer, 13, could be isolated (24% overall from 8), Swern oxidation furnished the aldehyde 14 which was subjected to the Takai chlorovinylation to give a mixture of aplysiapyranoid C Ic and the reduced product, dechloroaplysiapyranoid C 15. This dechlorination under these conditions is quite unusual. A second synthesis of aplysiapyranoid C avoided this problem. Selective protection of the more hindered tertiary alcohol of the chloro diol 7 afforded the primary alcohol 16 in which the tertiary alcohol was protected as the triethylsilyl ether. Swern oxidation, Takai reaction, and desilylation gave the dichloro alkenol 17 in 52% overall yield. In this case, only a small amount of the corresponding dechlorinated product was obtained. Final cyclization of 17 with TBCO afforded aplysiapyranoid C Ic as the major product in an isolated yield of 43%. Thus we have completed two total syntheses of aplysiapyranoid C Ic from the simple bromide 2 in eight or nine steps and good overall yield.
    DOI:
    10.1021/jo972228j
  • 作为产物:
    参考文献:
    名称:
    Total Syntheses of the Cytotoxic Marine Natural Product, Aplysiapyranoid C1
    摘要:
    The first total syntheses of the cytotoxic marine natural product, aplysiapyranoid C, 1c, are reported. The Wittig reaction of 4-methyl-3-pentenyltriphenylphosphorane with the THP ether of hydroxyacetone gave in 88% yield the Z-alkene 4 which was hydrolyzed to the alcohol 5 in 72% yield. Sharpless asymmetric epoxidation of 5 afforded the epoxy alcohol 6 in 91% yield and 81% ee, Opening of the epoxide of 6 with ammonium chloride in DMSO gave in 76% yield the chloro diol 7 which was converted to the primary TBS ether 8 in 95% yield. Opening of the epoxy alcohol 6 with HCl and Ti(OiPr)(4) afforded the desired chloro diol 7 as the minor product along with the rearranged chloromethyl diol 9. This compound is presumably formed by opening of the protonated epoxide to give a butenyl cation which rearranges to the cyclopropylcarbinyl cation and is then trapped by chloride ion at the unsubstituted cyclopropyl carbon, regenerating the alkene. Cyclization of the TBS ether 8 with tetrabromocyclohexadienone (TBCO) afforded a mixture of all four possible cyclization products, the desired tetrahydropyrans 11a,b and the tetrahydrofurans 12a,b with the former being isolated in 70% yield. Hydrolysis of the TBS ether afforded the primary alcohols from which the desired isomer, 13, could be isolated (24% overall from 8), Swern oxidation furnished the aldehyde 14 which was subjected to the Takai chlorovinylation to give a mixture of aplysiapyranoid C Ic and the reduced product, dechloroaplysiapyranoid C 15. This dechlorination under these conditions is quite unusual. A second synthesis of aplysiapyranoid C avoided this problem. Selective protection of the more hindered tertiary alcohol of the chloro diol 7 afforded the primary alcohol 16 in which the tertiary alcohol was protected as the triethylsilyl ether. Swern oxidation, Takai reaction, and desilylation gave the dichloro alkenol 17 in 52% overall yield. In this case, only a small amount of the corresponding dechlorinated product was obtained. Final cyclization of 17 with TBCO afforded aplysiapyranoid C Ic as the major product in an isolated yield of 43%. Thus we have completed two total syntheses of aplysiapyranoid C Ic from the simple bromide 2 in eight or nine steps and good overall yield.
    DOI:
    10.1021/jo972228j
点击查看最新优质反应信息

文献信息

  • Total Syntheses of the Cytotoxic Marine Natural Product, Aplysiapyranoid C<sup>1</sup>
    作者:Michael E. Jung、Bruce T. Fahr、Derin C. D'Amico
    DOI:10.1021/jo972228j
    日期:1998.5.1
    The first total syntheses of the cytotoxic marine natural product, aplysiapyranoid C, 1c, are reported. The Wittig reaction of 4-methyl-3-pentenyltriphenylphosphorane with the THP ether of hydroxyacetone gave in 88% yield the Z-alkene 4 which was hydrolyzed to the alcohol 5 in 72% yield. Sharpless asymmetric epoxidation of 5 afforded the epoxy alcohol 6 in 91% yield and 81% ee, Opening of the epoxide of 6 with ammonium chloride in DMSO gave in 76% yield the chloro diol 7 which was converted to the primary TBS ether 8 in 95% yield. Opening of the epoxy alcohol 6 with HCl and Ti(OiPr)(4) afforded the desired chloro diol 7 as the minor product along with the rearranged chloromethyl diol 9. This compound is presumably formed by opening of the protonated epoxide to give a butenyl cation which rearranges to the cyclopropylcarbinyl cation and is then trapped by chloride ion at the unsubstituted cyclopropyl carbon, regenerating the alkene. Cyclization of the TBS ether 8 with tetrabromocyclohexadienone (TBCO) afforded a mixture of all four possible cyclization products, the desired tetrahydropyrans 11a,b and the tetrahydrofurans 12a,b with the former being isolated in 70% yield. Hydrolysis of the TBS ether afforded the primary alcohols from which the desired isomer, 13, could be isolated (24% overall from 8), Swern oxidation furnished the aldehyde 14 which was subjected to the Takai chlorovinylation to give a mixture of aplysiapyranoid C Ic and the reduced product, dechloroaplysiapyranoid C 15. This dechlorination under these conditions is quite unusual. A second synthesis of aplysiapyranoid C avoided this problem. Selective protection of the more hindered tertiary alcohol of the chloro diol 7 afforded the primary alcohol 16 in which the tertiary alcohol was protected as the triethylsilyl ether. Swern oxidation, Takai reaction, and desilylation gave the dichloro alkenol 17 in 52% overall yield. In this case, only a small amount of the corresponding dechlorinated product was obtained. Final cyclization of 17 with TBCO afforded aplysiapyranoid C Ic as the major product in an isolated yield of 43%. Thus we have completed two total syntheses of aplysiapyranoid C Ic from the simple bromide 2 in eight or nine steps and good overall yield.
查看更多