Evaluation of potential Myt1 kinase inhibitors by TR-FRET based binding assay
摘要:
In the human cell cycle, the Myt1 kinase is a crucial regulator of the G2/M transition. Because this membrane-associated kinase is hard to obtain and assay, there is a distinct lack of data so far. Here we report the derivatization of a glycoglycerolipid which was shown previously to be active in a Myt1 activity assay. These compounds were tested in a binding assay together with a set of common kinase inhibitors against a full-length Myt1 expressed in a human cell line. Dasatinib exhibited nanomolar affinity whereas broad coverage inhibitors such as sunitinib and staurosporine derivatives did not show any effect. We also carried out docking studies for the most potent compounds allowing further insights into the inhibitor interaction of this kinase. The glycoglycerolipids showed no significant effects in the binding assay, endorsing the idea of a mechanism of action distant from the active site. (C) 2012 Elsevier Masson SAS. All rights reserved.
Evaluation of potential Myt1 kinase inhibitors by TR-FRET based binding assay
作者:Alexander Rohe、Christiane Göllner、Kanin Wichapong、Frank Erdmann、Ghassab M.A. Al-Mazaideh、Wolfgang Sippl、Matthias Schmidt
DOI:10.1016/j.ejmech.2012.06.007
日期:2013.3
In the human cell cycle, the Myt1 kinase is a crucial regulator of the G2/M transition. Because this membrane-associated kinase is hard to obtain and assay, there is a distinct lack of data so far. Here we report the derivatization of a glycoglycerolipid which was shown previously to be active in a Myt1 activity assay. These compounds were tested in a binding assay together with a set of common kinase inhibitors against a full-length Myt1 expressed in a human cell line. Dasatinib exhibited nanomolar affinity whereas broad coverage inhibitors such as sunitinib and staurosporine derivatives did not show any effect. We also carried out docking studies for the most potent compounds allowing further insights into the inhibitor interaction of this kinase. The glycoglycerolipids showed no significant effects in the binding assay, endorsing the idea of a mechanism of action distant from the active site. (C) 2012 Elsevier Masson SAS. All rights reserved.