摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(9H-fluoren-9-yl)methyl undec-10-enylcarbamate | 870094-38-5

中文名称
——
中文别名
——
英文名称
(9H-fluoren-9-yl)methyl undec-10-enylcarbamate
英文别名
(9H-fluoren-9-yl)methyl N-(undec-10-en-1-yl)carbamate;9H-fluoren-9-ylmethyl N-undec-10-enylcarbamate
(9H-fluoren-9-yl)methyl undec-10-enylcarbamate化学式
CAS
870094-38-5
化学式
C26H33NO2
mdl
——
分子量
391.554
InChiKey
MIYSAOWZCMOQBA-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    7.6
  • 重原子数:
    29
  • 可旋转键数:
    13
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.42
  • 拓扑面积:
    38.3
  • 氢给体数:
    1
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    (9H-fluoren-9-yl)methyl undec-10-enylcarbamate3-氨基丙基三乙氧基硅烷 在 platinum(o)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane 作用下, 以 二氯甲烷 、 xylene 为溶剂, 反应 12.0h, 以84%的产率得到(9H-fluoren-9-yl)methyl 11-(triethoxysilyl)undecylcarbamate
    参考文献:
    名称:
    Diffusion-Based Deprotection in Mesoporous Materials:  A Strategy for Differential Functionalization of Porous Silica Particles
    摘要:
    A monodisperse, spherical mesoporous silica (Acid-Prepared Mesoporous Spheres, APMS) was prepared and then functionalized with two types of Fmoc (9-fluorenylmethyloxycarbonyl) terminated silanes with variable chain lengths. N-2 physisorption experiments indicated that, under some conditions, the pores of the solid were completely filled by the Fmoc-protected organosilanes. These blocked pores were then "reopened" by the cleavage of Fmoc groups with a piperidine solution. In contrast to the solution reaction, this deprotection reaction was much slower within the pores. The rate of deprotection was followed by UV/visible spectroscopy, and a plot of Fmoc released versus time showed a sigmoidal shape. An empirical model was applied to the data, which indicated that the reaction was influenced by the concentration and temperature of the piperidine solution as well as the number of Fmoc moieties within the pores. Using this information, we show that the location of the deprotection reaction in the pores of the silica can be empirically controlled. Our work provides a method by which the surface of the porous silica can be functionalized in a well-defined manner. This method can be used to produce materials for catalysis or drug delivery.
    DOI:
    10.1021/ja070598b
  • 作为产物:
    描述:
    2-十一烯酸 在 lithium aluminium tetrahydride 、 尿素 作用下, 以 四氢呋喃二氯甲烷 为溶剂, 反应 30.0h, 生成 (9H-fluoren-9-yl)methyl undec-10-enylcarbamate
    参考文献:
    名称:
    Diffusion-Based Deprotection in Mesoporous Materials:  A Strategy for Differential Functionalization of Porous Silica Particles
    摘要:
    A monodisperse, spherical mesoporous silica (Acid-Prepared Mesoporous Spheres, APMS) was prepared and then functionalized with two types of Fmoc (9-fluorenylmethyloxycarbonyl) terminated silanes with variable chain lengths. N-2 physisorption experiments indicated that, under some conditions, the pores of the solid were completely filled by the Fmoc-protected organosilanes. These blocked pores were then "reopened" by the cleavage of Fmoc groups with a piperidine solution. In contrast to the solution reaction, this deprotection reaction was much slower within the pores. The rate of deprotection was followed by UV/visible spectroscopy, and a plot of Fmoc released versus time showed a sigmoidal shape. An empirical model was applied to the data, which indicated that the reaction was influenced by the concentration and temperature of the piperidine solution as well as the number of Fmoc moieties within the pores. Using this information, we show that the location of the deprotection reaction in the pores of the silica can be empirically controlled. Our work provides a method by which the surface of the porous silica can be functionalized in a well-defined manner. This method can be used to produce materials for catalysis or drug delivery.
    DOI:
    10.1021/ja070598b
点击查看最新优质反应信息

文献信息

  • One-step labelling of sphingolipids via a scrambling cross-metathesis reaction
    作者:Peter Nussbaumer、Peter Ettmayer、Carsten Peters、Daniela Rosenbeiger、Klemens Högenauer
    DOI:10.1039/b508132g
    日期:——
    The alkyl chain in the backbone of sphingosine derivatives can be exchanged with functionalised (labelled) side chains in a single step under cross-metathesis reaction conditions.
    在交叉甲基化反应条件下,鞘磷脂衍生物骨架中的烷基链可与功能化(标记)侧链进行一步交换。
  • WO2006/128657
    申请人:——
    公开号:——
    公开(公告)日:——
  • Diffusion-Based Deprotection in Mesoporous Materials:  A Strategy for Differential Functionalization of Porous Silica Particles
    作者:Kai Cheng、Christopher C. Landry
    DOI:10.1021/ja070598b
    日期:2007.8.1
    A monodisperse, spherical mesoporous silica (Acid-Prepared Mesoporous Spheres, APMS) was prepared and then functionalized with two types of Fmoc (9-fluorenylmethyloxycarbonyl) terminated silanes with variable chain lengths. N-2 physisorption experiments indicated that, under some conditions, the pores of the solid were completely filled by the Fmoc-protected organosilanes. These blocked pores were then "reopened" by the cleavage of Fmoc groups with a piperidine solution. In contrast to the solution reaction, this deprotection reaction was much slower within the pores. The rate of deprotection was followed by UV/visible spectroscopy, and a plot of Fmoc released versus time showed a sigmoidal shape. An empirical model was applied to the data, which indicated that the reaction was influenced by the concentration and temperature of the piperidine solution as well as the number of Fmoc moieties within the pores. Using this information, we show that the location of the deprotection reaction in the pores of the silica can be empirically controlled. Our work provides a method by which the surface of the porous silica can be functionalized in a well-defined manner. This method can be used to produce materials for catalysis or drug delivery.
查看更多

同类化合物

(S)-2-N-Fmoc-氨基甲基吡咯烷盐酸盐 (2S,4S)-Fmoc-4-三氟甲基吡咯烷-2-羧酸 黎芦碱 鳥胺酸 魏因勒卜链接剂 雷迪帕韦二丙酮合物 雷迪帕韦 雷尼托林 锰(2+)二{[乙酰基(9H-芴-2-基)氨基]氧烷负离子} 达托霉素杂质 赖氨酸杂质4 螺[环戊烷-1,9'-芴] 螺[环庚烷-1,9'-芴] 螺[环己烷-1,9'-芴] 螺-(金刚烷-2,9'-芴) 藜芦托素 荧蒽 反式-2,3-二氢二醇 草甘膦-FMOC 英地卡胺 苯芴醇杂质A 苯并[a]芴酮 苯基芴胺 苯(甲)醛,9H-芴-9-亚基腙 芴甲氧羰酰胺 芴甲氧羰酰基高苯丙氨酸 芴甲氧羰酰基肌氨酸 芴甲氧羰酰基环己基甘氨酸 芴甲氧羰酰基正亮氨酸 芴甲氧羰酰基D-环己基甘氨酸 芴甲氧羰酰基D-Β环己基丙氨酸 芴甲氧羰酰基-O-三苯甲基丝氨酸 芴甲氧羰酰基-D-正亮氨酸 芴甲氧羰酰基-6-氨基己酸 芴甲氧羰基-高丝氨酸内酯 芴甲氧羰基-缬氨酸-1-13C 芴甲氧羰基-beta-赖氨酰酸(叔丁氧羰基) 芴甲氧羰基-S-叔丁基-L-半胱氨酸五氟苯基脂 芴甲氧羰基-S-乙酰氨甲基-L-半胱氨酸 芴甲氧羰基-PEG9-羧酸 芴甲氧羰基-PEG8-琥珀酰亚胺酯 芴甲氧羰基-PEG7-羧酸 芴甲氧羰基-PEG4-羧酸 芴甲氧羰基-O-苄基-L-苏氨酸 芴甲氧羰基-O-叔丁酯-L-苏氨酸五氟苯酚酯 芴甲氧羰基-O-叔丁基-D-苏氨酸 芴甲氧羰基-N6-三甲基硅乙氧羰酰基-L-赖氨酸 芴甲氧羰基-L-苏氨酸 芴甲氧羰基-L-脯氨酸五氟苯酯 芴甲氧羰基-L-半胱氨酸 芴甲氧羰基-L-β-高亮氨酸