摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

辛胺盐酸盐 | 142-95-0

中文名称
辛胺盐酸盐
中文别名
壬胺盐酸盐
英文名称
n-octylamine hydrochloride
英文别名
octylamine hydrochloride;octylammonium chloride;n-octylammonium chloride;octan-1-amine hydrochloride;1-octanammonium chloride;hydron;octan-1-amine;chloride
辛胺盐酸盐化学式
CAS
142-95-0
化学式
C8H20N*Cl
mdl
MFCD00042019
分子量
165.706
InChiKey
PHFDTSRDEZEOHG-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    198°C(lit.)

计算性质

  • 辛醇/水分配系数(LogP):
    2.48
  • 重原子数:
    10
  • 可旋转键数:
    6
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    26
  • 氢给体数:
    2
  • 氢受体数:
    1

安全信息

  • 危险品标志:
    Xn
  • 安全说明:
    S26,S36,S37,S39
  • 危险类别码:
    R36/37/38
  • 海关编码:
    2921199090
  • 危险性防范说明:
    P264,P280,P302+P352,P337+P313,P305+P351+P338,P362+P364,P332+P313
  • 危险性描述:
    H315,H319
  • 储存条件:
    存放于惰性气体中,并避免接触湿气(吸湿)。

SDS

SDS:85f303d4d4598049b5014767202e3e28
查看
Name: Octylamine Hydrochloride, 99% (Titr.) Material Safety Data Sheet
Synonym: None Known.
CAS: 142-95-0
Section 1 - Chemical Product MSDS Name: Octylamine Hydrochloride, 99% (Titr.) Material Safety Data Sheet
Synonym: None Known.
SECTION 2 - COMPOSITION, INFORMATION ON INGREDIENTS
CAS# Chemical Name content EINECS#
142-95-0 Octylamine Hydrochloride 99% 205-574-8
Hazard Symbols: XI
Risk Phrases: 36/37/38
SECTION 3 - HAZARDS IDENTIFICATION EMERGENCY OVERVIEW Irritating to eyes, respiratory system and skin. Potential Health Effects
Eye:
Causes eye irritation. May cause chemical conjunctivitis.
Skin:
Causes skin irritation.
Ingestion:
May cause gastrointestinal irritation with nausea, vomiting and diarrhea. May cause methemoglobinemia, cyanosis (bluish discoloration of skin due to deficient oxygenation of the blood), convulsions, and death.
Inhalation:
Causes respiratory tract irritation. May cause methemoglobinemia, cyanosis (bluish discoloration of skin due to deficient oxygenation of the blood), convulsions, tachycardia, dyspnea (labored breathing), and death. Can produce delayed pulmonary edema.
Chronic:
May cause methemoglobinemia, which is characterized by chocolate-brown colored blood, headache, weakness, dizziness, breath shortness, cyanosis (bluish skin due to deficient oxygenation of blood), rapid heart rate, unconsciousness and possible death. Effects may be delayed.
SECTION 4 - FIRST AID MEASURES
Eyes:
Flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical aid.
Skin:
Get medical aid. Flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse.
Ingestion:
Never give anything by mouth to an unconscious person. Get medical aid. Do NOT induce vomiting. If conscious and alert, rinse mouth and drink 2-4 cupfuls of milk or water.
Inhalation:
Remove from exposure and move to fresh air immediately. If breathing is difficult, give oxygen. Get medical aid. Do NOT use mouth-to-mouth resuscitation. If breathing has ceased apply artificial respiration using oxygen and a suitable mechanical device such as a bag and a mask.
Notes to Physician:
Treat symptomatically and supportively. For methemoglobinemia, administer oxygen alone or with Methylene Blue depending on the methemoglobin concentration in the blood.
Antidote:
Methylene blue, alone or in combination with oxygen is indicated as a treatment in nitrite induced methemoglobinemia.
SECTION 5 - FIRE FIGHTING MEASURES
General Information:
As in any fire, wear a self-contained breathing apparatus in pressure-demand, MSHA/NIOSH (approved or equivalent), and full protective gear. During a fire, irritating and highly toxic gases may be generated by thermal decomposition or combustion. Runoff from fire control or dilution water may cause pollution.
Extinguishing Media:
Use foam, dry chemical, or carbon dioxide. Use water spray, dry chemical, carbon dioxide, or appropriate foam.
SECTION 6 - ACCIDENTAL RELEASE MEASURES
General Information: Use proper personal protective equipment as indicated in Section 8.
Spills/Leaks:
Vacuum or sweep up material and place into a suitable disposal container. Clean up spills immediately, observing precautions in the Protective Equipment section. Avoid generating dusty conditions. Provide ventilation.
SECTION 7 - HANDLING and STORAGE
Handling:
Minimize dust generation and accumulation. Avoid breathing dust, vapor, mist, or gas. Avoid contact with eyes, skin, and clothing. Keep container tightly closed. Avoid ingestion and inhalation. Use with adequate ventilation. Wash clothing before reuse.
Storage:
Store in a tightly closed container. Store in a cool, dry, well-ventilated area away from incompatible substances.
SECTION 8 - EXPOSURE CONTROLS, PERSONAL PROTECTION
Engineering Controls:
Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower. Use adequate ventilation to keep airborne concentrations low. Exposure Limits CAS# 142-95-0: Personal Protective Equipment
Eyes:
Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166.
Skin:
Wear appropriate protective gloves to prevent skin exposure.
Clothing:
Wear a chemical apron. Wear appropriate protective clothing to prevent skin exposure.
Respirators:
Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.
SECTION 9 - PHYSICAL AND CHEMICAL PROPERTIES
Physical State: Crystalline powder
Color: white to almost white
Odor: Not available.
pH: Not available.
Vapor Pressure: Not available.
Viscosity: Not available.
Boiling Point: Not available.
Freezing/Melting Point: Not available.
Autoignition Temperature: Not applicable.
Flash Point: Not applicable.
Explosion Limits, lower: Not available.
Explosion Limits, upper: Not available.
Decomposition Temperature:
Solubility in water:
Specific Gravity/Density:
Molecular Formula: C8H19N.HCl
Molecular Weight: 165.71
SECTION 10 - STABILITY AND REACTIVITY
Chemical Stability:
Stable at room temperature in closed containers under normal storage and handling conditions.
Conditions to Avoid:
Incompatible materials, dust generation, excess heat.
Incompatibilities with Other Materials:
Oxidizing agents.
Hazardous Decomposition Products:
Hydrogen chloride, carbon monoxide, oxides of nitrogen, irritating and toxic fumes and gases, carbon dioxide.
Hazardous Polymerization: Has not been reported
SECTION 11 - TOXICOLOGICAL INFORMATION RTECS#: CAS# 142-95-0 unlisted.
LD50/LC50:
Not available.
Carcinogenicity:
Octylamine Hydrochloride - Not listed by ACGIH, IARC, or NTP.
SECTION 12 - ECOLOGICAL INFORMATION
SECTION 13 - DISPOSAL CONSIDERATIONS Dispose of in a manner consistent with federal, state, and local regulations.
SECTION 14 - TRANSPORT INFORMATION IATA Not regulated as a hazardous material. IMO Not regulated as a hazardous material. RID/ADR Not regulated as a hazardous material.
SECTION 15 - REGULATORY INFORMATION European/International Regulations European Labeling in Accordance with EC Directives
Hazard Symbols: XI
Risk Phrases:
R 36/37/38 Irritating to eyes, respiratory system and skin.
Safety Phrases:
S 26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. S 37/39 Wear suitable gloves and eye/face protection. WGK (Water Danger/Protection) CAS# 142-95-0: No information available. Canada CAS# 142-95-0 is listed on Canada's NDSL List. CAS# 142-95-0 is not listed on Canada's Ingredient Disclosure List. US FEDERAL TSCA CAS# 142-95-0 is listed on the TSCA inventory.
SECTION 16 - ADDITIONAL INFORMATION
MSDS Creation Date: 9/02/1997 Revision #4 Date: 3/18/2003 The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no way shall the company be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if the company has been advised of the possibility of such damages.

SECTION 16 - ADDITIONAL INFORMATION
N/A

反应信息

  • 作为反应物:
    描述:
    辛胺盐酸盐高氯酸银水合物丙酮 作用下, 生成 OAP
    参考文献:
    名称:
    研究某些高氯酸盐在非水介质中的溶剂化行为并使用 Born 公式预测其离子溶剂化热力学
    摘要:
    根据 RNH 3 ClO 4(R 是乙基、正丙基、正己基和正辛基)在二元混合物中的声速、密度和电导率的适当数据,对离子溶剂化的体积、声学特性和热力学进行系统研究乙腈 (AN) 和二甲基亚砜 (DMSO) 在不同温度下制成。各种声学参数,如松弛强度 ( r ) 、 Rao 常数 ( R ) 、 Wada 常数 ( W )、可用体积 ( Va )、范德华常数 ( b ) 和表观摩尔体积 ( Vɸ ) 通过T = (298, 308, 318 和 328) K 和P  = 0.1 MPa 压力下的密度和声速实验数据进行评估从表观摩尔体积的数据来看,其他参数如限制表观摩尔可扩展性φ乙ο和赫普勒常数(∂φ乙ο/∂吨)p评估了有助于确定溶液中溶质的结构形成和结构破坏能力的方法。在这项工作的第二部分,烷基铵 (RNH 3 + ) 和高氯酸根 (ClO 4 - ) 离子的溶剂化半径 ( r i )已在四个研究温度下在
    DOI:
    10.1016/j.molliq.2022.121067
  • 作为产物:
    描述:
    正辛腈盐酸氢气 作用下, 以 乙醚甲苯 为溶剂, 20.0~120.0 ℃ 、3.0 MPa 条件下, 反应 16.0h, 生成 辛胺盐酸盐
    参考文献:
    名称:
    由MOF-碳模板制备的钴基纳米颗粒作为有效的氢化催化剂†
    摘要:
    用于工业相关氢化反应的高效和选择性纳米结构催化剂的开发继续是化学研究的实际目标。尤其是腈和硝基芳烃的氢化对于伯胺的生产非常重要,伯胺构成了高级化学品,生命科学分子和材料的重要原料和关键中间体。在这里,我们报道了石墨烯壳包封的Co 3 O 4的制备-和钴-纳米颗粒通过碳上对苯二甲酸钴对苯二甲酸MOF的模板合成和随后的热解而负载在碳上。所得的纳米颗粒产生稳定且可重复使用的催化剂,用于官能化和结构多样的芳族,杂环和脂肪族腈以及硝基化合物选择性氢化为伯胺(> 65实例)。这种新型的基于非贵金属的氢化方案的合成和实用性通过将数种反应的规模扩大到数克规模并回收催化剂得到了证明。
    DOI:
    10.1039/c8sc02807a
  • 作为试剂:
    描述:
    silver nitrate辛胺盐酸盐 作用下, 以 乙二醇二甲醚 为溶剂, 反应 11.0h, 生成 silver
    参考文献:
    名称:
    用于抗静电涂层的Ag纳米线/Zn2SnO4透明导电薄膜的两步沉积。
    摘要:
    银纳米线(AgNW)网络在透明导电电极或抗静电涂层中发挥着重要作用。在这项工作中,我们描述了一种简便的两步法来制造 AgNWs/Zn2SnO4 复合薄膜。通过改进的多元醇方法制备了具有高长径比的长银纳米线,其中使用有机辛胺盐酸盐而不是常用的无机氯化物作为形状控制剂。AgNW 网络在玻璃基板上制造,在其上沉积 Zn2SnO4 薄膜,形成坚固的 AgNWs/Zn2SnO4 复合薄膜。所制备的复合薄膜具有强附着力、高热稳定性、低方块电阻(5-15 ohm sq-1)和高透光率(85-80%),在透明导电电极和抗静电涂层方面具有广阔的应用前景。
    DOI:
    10.1039/d1ra00427a
点击查看最新优质反应信息

文献信息

  • Cyclic (Alkyl)(amino)carbene Ligand-Promoted Nitro Deoxygenative Hydroboration with Chromium Catalysis: Scope, Mechanism, and Applications
    作者:Lixing Zhao、Chenyang Hu、Xuefeng Cong、Gongda Deng、Liu Leo Liu、Meiming Luo、Xiaoming Zeng
    DOI:10.1021/jacs.0c12318
    日期:2021.1.27
    Transition metal catalysis that utilizes N-heterocyclic carbenes as noninnocent ligands in promoting transformations has not been well studied. We report here a cyclic (alkyl)(amino)carbene (CAAC) ligand-promoted nitro deoxygenative hydroboration with cost-effective chromium catalysis. Using 1 mol % of CAAC-Cr precatalyst, the addition of HBpin to nitro scaffolds leads to deoxygenation, allowing for
    利用 N-杂环卡宾作为非无害配体促进转化的过渡金属催化尚未得到很好的研究。我们在这里报告了具有成本效益的铬催化的环状(烷基)(氨基)卡宾(CAAC)配体促进的硝基脱氧硼氢化反应。使用 1 mol % 的 CAAC-Cr 预催化剂,将 HBpin 添加到硝基支架上会导致脱氧,从而保留各种可还原的官能团和敏感基团对硼氢化的相容性,从而提供一种温和、化学选择性和易于形成的策略苯胺,以及杂芳基和脂肪胺衍生物,具有广泛的范围和特别高的转换数(高达 1.8 × 106)。基于理论计算的机械研究,表明CAAC配体在促进HBpin氢化物极性反转中起重要作用;它用作 H 穿梭以促进脱氧硼氢化。通过这种策略制备的几种市售药物突出了其在药物化学中的潜在应用。
  • Boron-Catalyzed Silylative Reduction of Nitriles in Accessing Primary Amines and Imines
    作者:Narasimhulu Gandhamsetty、Jinseong Jeong、Juhyeon Park、Sehoon Park、Sukbok Chang
    DOI:10.1021/acs.joc.5b00941
    日期:2015.7.17
    Silylative reduction of nitriles was studied under transition metal-free conditions by using B(C6F5)3 as a catalyst with hydrosilanes as a reductant. Alkyl and (hetero)aryl nitriles were efficiently converted to primary amines or imines under mild conditions. The choice of silanes was found to determine the selectivity: while a full reduction of nitriles was highly facile, the use of sterically bulky
    在无过渡金属的条件下,通过使用B(C 6 F 5)3作为催化剂,以氢硅烷作为还原剂,研究了腈的甲硅烷基化还原反应。在温和的条件下,烷基和(杂)芳基腈被有效地转化为伯胺或亚胺。发现硅烷的选择决定了选择性:虽然腈的完全还原非常容易,但是使用空间大体积的硅烷允许部分还原,从而生成N-甲硅烷基亚胺。
  • Ion-Pair Complexation with a Cavitand Receptor
    作者:Francesca Tancini、Thomas Gottschalk、W. Bernd Schweizer、François Diederich、Enrico Dalcanale
    DOI:10.1002/chem.201000573
    日期:——
    binding. Four additional phosphate moieties were introduced into the lower rim in close proximity to the anionic site to provide hydrogen‐bonding‐acceptor PO groups and promote cation complexation at the bottom of the cavitand. The binding ability of the synthesized ligands was analyzed by 1H NMR spectroscopy and, when possible, by isothermal titration calorimetry (ITC); the data were in agreement when
    间苯二酚在下缘的烷基脚内与阴离子结合的能力已被用作开发新型空泡的起点,该空泡能够吞噬缔合常数(K ass)在范围内的氯化铵中的铵离子接触离子对。10 3 –10 4  M -1。将亚甲基桥引入上缘,以使四氢呋喃向下的圆锥构象中的间苯二甲烯冻结质子在下部口袋中会聚,从而使负责阴离子结合的CH-阴离子相互作用最大化。在靠近阴离子位点的下部边缘引入了另外四个磷酸盐部分,以提供氢键受体PO基团并促进空洞底部的阳离子络合。合成的配体的结合能力通过1 H NMR光谱分析,并在可能的情况下通过等温滴定热分析(ITC)进行分析。当使用互补技术时,数据是一致的。
  • Micelle and oligomer kinetics in aqueous solutions of n-octylammonium chloride: Monomer exchange, protrusion and chain isomerization
    作者:Rüdiger Polacek、Udo Kaatze
    DOI:10.1016/j.molliq.2010.09.001
    日期:2010.11
    properties of solutions of the short-chain cationic surfactant n-octylammonium chloride in water are reported at solute concentrations between 0.18∙10− 3 mol cm− 3 and 1.6∙10− 3 mol cm− 3. Two relaxation terms are evaluated in the light of the fast monomer exchange of the Aniansson–Wall–Teubner–Kahlweit model of micelle kinetics. Significant effects of the incomplete dissociation of counter ions as well
    根据在0.1到2000 MHz频率范围内的超声光谱测量结果,报告了在0.18∙10-3  mol cm -3和3的溶质浓度下,短链阳离子表面活性剂正辛基氯化铵在水中的溶液的超声弛豫特性。1.6∙10 − 3 摩尔厘米− 3。根据胶束动力学的Aniansson-Wall-Teubner-Kahlweit模型的快速单体交换,评估了两个松弛项。显示了在接近临界胶束浓度的表面活性剂浓度下,抗衡离子的不完全解离以及大量低聚物的显着影响,并讨论了在较高表面活性剂浓度下非球状胶束形成的影响。关于低聚物的单体交换,起伏波动和表面活性剂烷基链的结构异构化,简要考虑了两个高频松弛项。
  • Compositional introduction of lithium ions into conductive polyoxovanadate–surfactant hybrid crystals
    作者:Yoshiki Kiyota、Minako Taira、Saki Otobe、Koji Hanyuda、Haruo Naruke、Takeru Ito
    DOI:10.1039/c7ce00595d
    日期:——
    Polyoxovanadate–surfactant hybrid layered crystals were successfully synthesized as single crystals by employing a primary alkylammonium cation, octylammonium ([C8H17NH3]+, C8NH3). Two types of hybrid crystals with the formulae [C8H17NH3]6[V10O28]·2H2O (C8NH3–V10) and [C8H17NH3]4Li2[V10O28]·4C2H5OH·6H2O (C8NH3–Li–V10) were obtained by different synthetic procedures. Changing the synthetic conditions enabled the precise introduction of lithium cations into the polyoxovanadate–surfactant hybrid crystals according to compositional control. C8NH3–V10 contained a discrete [V10O28]6− anion, while C8NH3–Li–V10 was composed of a [V10O28]6− anion associated with two lithium cations formulated as [Li(H2O)3]2[V10O28]}4−. The conductivities of C8NH3–V10 and C8NH3–Li–V10 were investigated under anhydrous conditions at intermediate temperatures.
    通过使用一种初级烷基铵阳离子——辛基铵([C8H17NH3]+, C8NH3),成功合成了聚氧钒酸盐-表面活性剂杂化层状单晶。通过不同的合成过程,得到了两种配方的杂化晶体:[C8H17NH3]6[V10O28]·2H2O (C8NH3-V10) 和 [C8H17NH3]4Li2[V10O28]·4C2H5OH·6H2O (C8NH3-Li-V10)。通过改变合成条件,根据成分控制精确地将锂阳离子引入聚氧钒酸盐-表面活性剂杂化晶体中。C8NH3-V10 包含一个离散的 [V10O28]6- 阴离子,而 C8NH3-Li-V10 由一个 [V10O28]6- 阴离子与两个锂阳离子组成,表示为 [Li(H2O)3]2[V10O28]}4-。在无水条件下,对 C8NH3-V10 和 C8NH3-Li-V10 的导电性进行了中温研究。
查看更多

同类化合物

(N-(2-甲基丙-2-烯-1-基)乙烷-1,2-二胺) (4-(苄氧基)-2-(哌啶-1-基)吡啶咪丁-5-基)硼酸 (11-巯基十一烷基)-,,-三甲基溴化铵 鼠立死 鹿花菌素 鲸蜡醇硫酸酯DEA盐 鲸蜡硬脂基二甲基氯化铵 鲸蜡基胺氢氟酸盐 鲸蜡基二甲胺盐酸盐 高苯丙氨醇 高箱鲀毒素 高氯酸5-(二甲氨基)-1-({(E)-[4-(二甲氨基)苯基]甲亚基}氨基)-2-甲基吡啶正离子 高氯酸2-氯-1-({(E)-[4-(二甲氨基)苯基]甲亚基}氨基)-6-甲基吡啶正离子 高氯酸2-(丙烯酰基氧基)-N,N,N-三甲基乙铵 马诺地尔 马来酸氢十八烷酯 马来酸噻吗洛尔EP杂质C 马来酸噻吗洛尔 马来酸倍他司汀 顺式环己烷-1,3-二胺盐酸盐 顺式氯化锆二乙腈 顺式吡咯烷-3,4-二醇盐酸盐 顺式双(3-甲氧基丙腈)二氯铂(II) 顺式3,4-二氟吡咯烷盐酸盐 顺式1-甲基环丙烷1,2-二腈 顺式-二氯-反式-二乙酸-氨-环己胺合铂 顺式-二抗坏血酸(外消旋-1,2-二氨基环己烷)铂(II)水合物 顺式-N,2-二甲基环己胺 顺式-4-甲氧基-环己胺盐酸盐 顺式-4-环己烯-1.2-二胺 顺式-4-氨基-2,2,2-三氟乙酸环己酯 顺式-2-甲基环己胺 顺式-2-(苯基氨基)环己醇 顺式-2-(氨基甲基)-1-苯基环丙烷羧酸盐酸盐 顺式-1,3-二氨基环戊烷 顺式-1,2-环戊烷二胺 顺式-1,2-环丁腈 顺式-1,2-双氨甲基环己烷 顺式--N,N'-二甲基-1,2-环己二胺 顺式-(R,S)-1,2-二氨基环己烷铂硫酸盐 顺式-(2-氨基-环戊基)-甲醇 顺-2-戊烯腈 顺-1,3-环己烷二胺 顺-1,3-双(氨甲基)环己烷 顺,顺-丙二腈 非那唑啉 靛酚钠盐 靛酚 霜霉威盐酸盐 霜脲氰