摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(+)-γ-cadinene | 483-74-9

中文名称
——
中文别名
——
英文名称
(+)-γ-cadinene
英文别名
γ‐cadinene;γ-Cadinene;(+)-γ-Cadinen;(1α,4aβ,8aα)-1,2,3,4,4a,5,6,8a-octahydro-7-methyl-4-methylene-1-(1-methylethyl)-naphthalene;d-γ-Cadinen;(+)-gamma-Cadinene;(1S,4aR,8aR)-7-methyl-4-methylidene-1-propan-2-yl-2,3,4a,5,6,8a-hexahydro-1H-naphthalene
(+)-γ-cadinene化学式
CAS
483-74-9
化学式
C15H24
mdl
——
分子量
204.356
InChiKey
WRHGORWNJGOVQY-KKUMJFAQSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 物理描述:
    Liquid
  • 保留指数:
    1505;1507;1508;1507;1507;1492;1507;1502;1507;1498;1509;1511;1498;1498;1493;1513;1498;1491;1496;1530;1497;1514;1507;1507;1498;1496;1516;1487;1531;1513;1507;1508;1492;1511;1506;1498;1507;1490;1501;1514;1496;1514;1509;1501;1508;1508;1507;1495;1508;1479;1516;1506;1510;1512;1488;1492;1508;1499;1525;1522;1515;1508;1526;1483;1514;1517;1512;1513;1507;1506;1506;1509;1487;1510;1516;1512;1510;1519;1494;1493;1503;1497;1512;1508;1496.6;1501;1497;1524;1523.5;1506.5;1500;1516;1543;1515;1512;1491;1510;1497;1496;1505;1500;1507;1507;1496;1500;1507;1509;1514;1514;1504;1500;1515;1498;1508;1500;1510;1506;1513;1498;1505;1513;1514;1511;1514;1501;1504;1500;1509;1533;1490;1498;1515;1518;1500;1500;1498;1512;1506;1490;1516;1509;1513;1490;1489;1505;1507;1508;1498;1512;1506;1511;1500;1502;1511;1511;1518;1492;1505;1512;1509;1502;1514;1512;1513.8;1490;1503;1510;1498;1510;1480;1510;1493;1500;1510;1539;1521;1519;1499;1512;1504;1489;1497;1506;1508;1493;1500;1516;1517;1513;1520;1496;1518;1512;1512;1506;1507;1512;1503;1508;1496;1496;1509;1511;1510;1510;1509;1512;1493;1469;1506;1508;1504;1500;1517;1501;1510;1525;1509;1515;1499;1504;1497;1503;1504;1510;1518;1505;1510;1471

计算性质

  • 辛醇/水分配系数(LogP):
    4.3
  • 重原子数:
    15
  • 可旋转键数:
    1
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.73
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    Vlahov,R. et al., Collection of Czechoslovak Chemical Communications, 1967, vol. 32, p. 808 - 821
    摘要:
    DOI:
  • 作为产物:
    描述:
    参考文献:
    名称:
    Germacrene D, a key intermediate of cadinene group compounds and bourbonenes
    摘要:
    DOI:
    10.1016/s0040-4039(01)88136-3
点击查看最新优质反应信息

文献信息

  • Studies in sesquiterpenes—XXXVII
    作者:N.P. Damodaran、Sukh Dev
    DOI:10.1016/0040-4020(68)88174-8
    日期:1968.1
    A complete analysis of the essential oil from the rhizomes of Zingiber zerumbet Smith, is given and the isolation of several new humulene-based sesquiterpenoids is described.
    给出了对姜黄根茎上的根茎精油的完整分析,并描述了几种新的基于hu木烯的倍半萜类化合物的分离。
  • Lessons from 1,3-Hydride Shifts in Sesquiterpene Cyclizations
    作者:Jan Rinkel、Patrick Rabe、Paolina Garbeva、Jeroen S. Dickschat
    DOI:10.1002/anie.201608042
    日期:2016.10.17
    initial 1,10‐cyclisation‐1,3‐hydride shift cascades. Enzymes with products of known absolute configuration showed a coherent stereochemical course, except for (−)‐α‐amorphene synthase, for which the obtained results are better explained by an initial 1,6‐cyclisation. The link between the absolute configuration of the product and the stereochemical course of the 1,3‐hydride shifts enabled assignment of
    用7种细菌倍半萜环化酶将立体标记的前体转化,以研究其最初的1,10-环化-1,3-氢化物移位级联反应的立体化学。带有已知绝对构型的产物的酶显示出连贯的立体化学过程,除了(-)-α-Amorphene合酶外,最初的1,6-环化可以更好地解释所获得的结果。产品的绝对构型与1,3-氢化物转变的立体化学过程之间的联系使得可以分配三种酶产物的绝对构型,这可以通过常见副产物胚芽戊二烯D-4-ol的绝对构型独立确认。
  • The Biochemical and Molecular Basis for the Divergent Patterns in the Biosynthesis of Terpenes and Phenylpropenes in the Peltate Glands of Three Cultivars of Basil
    作者:Yoko Iijima、Rachel Davidovich-Rikanati、Eyal Fridman、David R. Gang、Einat Bar、Efraim Lewinsohn、Eran Pichersky
    DOI:10.1104/pp.104.051318
    日期:2004.11.1
    Abstract

    Surface glandular trichomes distributed throughout the aerial parts of sweet basil (Ocimum basilicum) produce and store monoterpene, sesquiterpene, and phenylpropene volatiles. Three distinct basil chemotypes were used to examine the molecular mechanisms underlying the divergence in their monoterpene and sesquiterpene content. The relative levels of specific terpenes in the glandular trichomes of each cultivar were correlated with the levels of transcripts for eight genes encoding distinct terpene synthases. In a cultivar that produces mostly (R)-linalool, transcripts of (R)-linalool synthase (LIS) were the most abundant of these eight. In a cultivar that synthesizes mostly geraniol, transcripts of geraniol synthase were the most abundant, but the glands of this cultivar also contained a transcript of an (R)-LIS gene with a 1-base insertion that caused a frameshift mutation. A geraniol synthase-LIS hybrid gene was constructed and expressed in Escherichia coli, and the protein catalyzed the formation of both geraniol and (R)-linalool from geranyl diphosphate. The total amounts of terpenes were correlated with total levels of terpene synthase activities, and negatively correlated with levels of phenylpropanoids and phenylalanine ammonia lyase activity. The relative levels of geranyl diphosphate synthase and farnesyl diphosphate synthase activities did not correlate with the total amount of terpenes produced, but showed some correlation with the ratio of monoterpenes to sesquiterpenes.

    摘要

    甜罗勒(Ocimum basilicum)空气部分分布着表面腺毛,这些腺毛产生和储存单萜、倍半萜和苯丙烯挥发性化合物。使用三种不同的罗勒化学型来研究其单萜和倍半萜含量差异的分子机制。每个品种的腺毛中特定萜类化合物的相对水平与编码八种不同萜类合成酶的转录本水平相关。在主要产生(R)-芳樟醇的品种中,(R)-芳樟醇合成酶(LIS)的转录本是这八个基因中最丰富的。在主要合成香茅醇的品种中,香茅醇合成酶的转录本最丰富,但该品种的腺体中也含有一个带有1个碱基插入引起了移码突变的(R)-LIS基因的转录本。构建并在大肠杆菌中表达了一种香茅醇合成酶-LIS杂交基因,该蛋白质催化了从香茅基二磷酸盐形成香茅醇和(R)-芳樟醇。总萜类化合物的总量与总萜类合成酶活性水平相关,并且与苯丙烯类和苯丙氨酸氨裂解酶活性水平呈负相关。香茅基二磷酸盐合成酶和法尼磷酸二磷酸盐合成酶活性的相对水平与产生的总萜类化合物量不相关,但与单萜和倍半萜比例有一定相关性。

  • The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds
    作者:Vitaly Portnoy、Yael Benyamini、Einat Bar、Rotem Harel-Beja、Shimon Gepstein、James J. Giovannoni、Arthur A. Schaffer、Joseph Burger、Yaakov Tadmor、Efraim Lewinsohn、Nurit Katzir
    DOI:10.1007/s11103-008-9296-6
    日期:2008.4
    A combined chemical, biochemical and molecular study was conducted to understand the differential accumulation of volatile sesquiterpenes in melon fruits. Sesquiterpenes were present mainly in the rinds of climacteric varieties, and a great diversity in their composition was found among varieties. Sesquiterpenes were generally absent in non-climacteric varieties. Two climacteric melon varieties, the green-fleshed ‘Noy Yizre'el’, and the orange-fleshed ‘Dulce’ were further examined. In ‘Noy Yizre'el’ the main sesquiterpenes accumulated are δ-cadinene, γ-cadinene and α-copaene, while α-farnesene is the main sesquiterpene in ‘Dulce’. Sesquiterpene synthase activities, mainly restricted to rinds of mature fruits, were shown to generate different sesquiterpenes in each variety according to the compositions found in rinds. EST melon database mining yielded two novel cDNAs coding for members of the Tps gene family termed CmTpsNY and CmTpsDul respectively, that are 43.2% similar. Heterologous expression in E. coli of CmTpsNY produced mainly δ-copaene, α-copaene, β-caryophyllene, germacrene D, α-muurolene, γ-cadinene, δ-cadinene, and α-cadinene, while CmTpsDul produced α-farnesene only. CmTpsNY was mostly expressed in ‘Noy Yizre'el’ rind while CmTpsDul expression was specific to ’Dulce’ rind. None of these genes was expressed in rinds of the non-climacteric ‘Tam Dew’ cultivar. Our results indicate that different sesquiterpene synthases encoded by different members of the Tps gene family are active in melon varieties and this specificity modulates the accumulation of sesquiterpenes. The genes are differentially transcriptionally regulated during fruit development and according to variety and are likely to be associated with chemical differences responsible for the unique aromas of melon varieties.
    for造成化学差异的原因。
  • Cloning and functional characterisation of a cis-muuroladiene synthase from black peppermint (Mentha×piperita) and direct evidence for a chemotype unable to synthesise farnesene
    作者:Ian M. Prosser、Racheal J. Adams、Michael H. Beale、Nathan D. Hawkins、Andrew L. Phillips、John A. Pickett、Linda M. Field
    DOI:10.1016/j.phytochem.2005.06.012
    日期:2006.8
    Using oligonucleotide primers designed to the known gene sequence of an (E)-beta-farnesene (E beta F) synthase, two cDNA sequences (MxpSS1 and MxpSS2) were cloned from a black peppermint (Mentha x piperita) plant. MxpSS1 encoded a protein with 96% overall amino acid sequence identity with the E beta F synthase. Recombinant MxpSS1 produced in Escherichia coli, after removal of an N-terminal thioredoxin fusion, had a K-m for FPP of 1.91 +/- 0.1 mu M and k(cat), of 0-18 s(-1) and converted farnesyl diphosphate (FPP) into four products, the major two being cis-muurola-3,5-diene (45%) and cis-muurola-4(14),5-diene (43%). This is the first cis-muuroladiene synthase, to be characterised. MxpSS2 encoded a protein with only two amino acids differing from E beta F synthase. Recombinant MxpSS2 protein showed no activity towards FPP. One of the two mutations, at position 531 (leucine in MxpSS2 and serine in E beta F synthase) was shown, by structural modelling to occur in the J-K loop, an element of the structure of sesquiterpene synthases known to be important in the reaction mechanism. Reintroduction of the serine at position 531 into MxpSS2 by site-directed mutagenesis restored E beta F synthase activity (K. for FPP 0.98 +/- 0.12 pM, k(cat) 0-1 s(-1)), demonstrating the crucial role of this residue in the enzyme activity. Analysis, by GC-MS, of the sesquiterpene profile of the plant used for the cloning, revealed that E beta F was not present, confirming that this particular mint chemotype had lost E beta F synthase activity due to the observed mutations. (c) 2005 Elsevier Ltd. All rights reserved.
查看更多

同类化合物

(5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,11-二酮 齐墩果-12-烯-2α,3β,28-三醇 齐墩果-12-烯-29-酸,3,22-二羟基-11-羰基-,g-内酯,(3b,20b,22b)- 齐墩果-12-烯-28-酸,3-[(6-脱氧-4-O-b-D-吡喃木糖基-a-L-吡喃鼠李糖基)氧代]-,(3b)-(9CI) 鼠特灵 鼠尾草酸醌 鼠尾草酸 鼠尾草酚酮 鼠尾草苦内脂 黑蚁素 黑蔓醇酯B 黑蔓醇酯A 黑蔓酮酯D 黑海常春藤皂苷A1 黑檀醇 黑果茜草萜 B 黑五味子酸 黏黴酮 黏帚霉酸 黄黄质 黄钟花醌 黄质醛 黄褐毛忍冬皂苷A 黄蝉花素 黄蝉花定