Novel Sulfonic Acid Salt and Derivative thereof, Photo-Acid Generator, and Process for Production of Sulfonic Acid Salt
申请人:Nagamori Masashi
公开号:US20110112306A1
公开(公告)日:2011-05-12
A fluorine-containing sulfonic acid salt or a compound having a fluorine-containing sulfonic acid group, either of which having a structure represented by the following general formula (1), is provided. Such a salt or compound can act as a suitable photo-acid generator, and can form a resist pattern having excellent sensitivity, resolution and mask-dependence.
[In general formula (1), R represents a substituted or unsubstituted linear or branched monovalent hydrocarbon group having 1 to 30 carbon atoms, a substituted or unsubstituted monovalent hydrocarbon group having 3 to 30 carbon atoms and a cyclic or a partially cyclic structure, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or a substituted or unsubstituted monovalent heterocyclic organic group having 4 to 30 carbon atoms.]
Sulfonic acid salt and derivative thereof, photo-acid generator, and process for production of sulfonic acid salt
申请人:Nagamori Masashi
公开号:US08889888B2
公开(公告)日:2014-11-18
A fluorine-containing sulfonic acid salt or a compound having a fluorine-containing sulfonic acid group, either of which having a structure represented by the following general formula (1), is provided. Such a salt or compound can act as a suitable photo-acid generator, and can form a resist pattern having excellent sensitivity, resolution and mask-dependence.
[In general formula (1), R represents a substituted or unsubstituted linear or branched monovalent hydrocarbon group having 1 to 30 carbon atoms, a substituted or unsubstituted monovalent hydrocarbon group having 3 to 30 carbon atoms and a cyclic or a partially cyclic structure, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or a substituted or unsubstituted monovalent heterocyclic organic group having 4 to 30 carbon atoms.]
time, hetero(aryl) Grignardreagents to promote selective dicarbofunctionalization of enol silyl ethers. From a broader perspective, this work expands the synthetic utility of enol silyl ethers and establishes bisphosphine–iron catalysis as enabling technology capable of orchestrating selective C–C bond formations with short-lived α-silyloxy radicals with practical implications towards sustainable chemical