摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

氯乙酸 | 79-11-8

中文名称
氯乙酸
中文别名
一氯醋酸;一氯乙酸
英文名称
chloroacetic acid
英文别名
monochloroacetic acid;2-chloroacetic acid;2-chloroethanoic acid
氯乙酸化学式
CAS
79-11-8
化学式
C2H3ClO2
mdl
MFCD00002683
分子量
94.4976
InChiKey
FOCAUTSVDIKZOP-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    63 °C
  • 沸点:
    189 °C
  • 密度:
    1.4043 g/cm3(Temp: 40 °C)
  • 物理描述:
    Chloroacetic acid, solid is a colorless to light-brown crystalline material. It is soluble in water and sinks in water. Combustible. It is transported as a molten liquid and therefore can cause thermal burns. It is toxic by ingestion, skin absorption and inhalation of dust. It is corrosive to metals and tissue.
  • 颜色/状态:
    Monoclinic prisms
  • 气味:
    Strong vinegar-like odor
  • 闪点:
    259 °F (126 °C) (Closed cup)
  • 溶解度:
    In water, 8.58X10+5 mg/L at 25 °C
  • 蒸汽密度:
    3.26 (EPA, 1998) (Relative to Air)
  • 蒸汽压力:
    6.5X10-2 mm Hg (8.68X10-3 kPa) at 25 °C
  • 亨利常数:
    9.26e-09 atm-m3/mole
  • 稳定性/保质期:
    1. 具有很强的腐蚀性,能腐蚀皮肤,破坏所有非贵重属、橡胶和木材等。酸性比醋酸强。无色或淡黄色结晶,带有刺激性气味,容易吸湿。它溶于乙醇乙醚等多种有机溶剂。

    2. 氯乙酸非常活泼,酸性强于乙酸(Ka=1.4×10^-3)。其乙醇溶液在紫外线照射下会分解为甲醇乙醛氯化氢氯乙酸及其碱属盐中的原子容易在溶液中被取代。当氯乙酸在回流的溶液中时,它逐渐发生解生成乙醇酸;若存在碱性物质,则会加速这一过程。该化合物与、胺、苯酚反应时能生成相应的α-取代乙酸,并且容易与各种醇作用形成酯类氯乙酸还能够与反应生成酰化合物,同时在的存在下进行化反应可生成二氯乙酸三氯乙酸

    3. 氯乙酸稳定。

    4. 避免接触强氧化剂、强碱或强还原剂。

    5. 应避免潮湿空气的环境。

    6. 不会发生聚合。

    7. 分解产物包括氯化氢光气

  • 自燃温度:
    >932 °F (>500 °C)
  • 分解:
    Hazardous decomposition products formed under fire conditions: Carbon oxides, hydrogen chloride gas.
  • 腐蚀性:
    ...extremely corrosive and will cause serious chemical burns.
  • 燃烧热:
    -715.9 kJ/mol (alpha-chloroacetic acid)
  • 汽化热:
    250 Btu/Lb = 139 cal/g = 5.82X10+5 J/kg
  • 表面张力:
    35.17 dyn/cm at 100 °C
  • 气味阈值:
    0.01 ppm, 0.042 mg/cu m
  • 解离常数:
    pKa = 2.87

计算性质

  • 辛醇/水分配系数(LogP):
    0.2
  • 重原子数:
    5
  • 可旋转键数:
    1
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    37.3
  • 氢给体数:
    1
  • 氢受体数:
    2

ADMET

代谢
14(C)-二氯乙炔在大鼠体内的代谢通过动态鼻部唯一暴露系统进行研究。已识别出的二氯乙炔代谢物包括:尿液中的N-乙酰-S-(1,2-二氯乙烯基)-L-半胱氨酸、二乙醇二氯乙酸草酸氯乙酸;粪便中的N-乙酰-S-(1,2-二氯乙烯基-L-半胱氨酸...
The metabolism of 14(C)-dichloroethyne was studied in rats by inhalation in a dynamic nose-only exposure system. ... Metabolites of dichloroethyne identified are: N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine, dichloroethanol, dichloroacetic acid, oxalic acid and chloroacetic acid in urine; N-acetyl-S-(1,2-dichlorovinyl-L-cysteine in feces...
来源:Hazardous Substances Data Bank (HSDB)
代谢
MCA的代谢在通过腹膜内注射给药后在老鼠身上得到了表征。在尿液中发现的MCA的代谢物包括S-羧甲基半胱酸(33%-43%自由态和1%-6%结合态)、硫代二乙酸二甘醇酸被确定为S-羧甲基半胱酸的主要尿液代谢物,大部分的甘醇酸被氧化成二氧化碳。代谢过程可能通过酶促解碳-键,生成甘醇酸。MCA还与GSH结合形成GSH的S-羧甲基衍生物,然后转化为S-羧甲基半胱酸。在通过灌胃给予50 mg/kg MCA的Wistar大鼠中,二甘醇酸被确定为主要的尿液代谢物,占给药剂量的60%。在大鼠中,比在小鼠中更高比例的给药MCA被排出为二甘醇酸;在两个物种中,剂量的大部分剩余以S-羧甲基半胱酸的形式排出。...初步的药代动力学研究显示,在大鼠体内的MCA迅速被代谢,与谷胱甘肽的结合解毒似乎是一个主要的代谢途径。
The metabolism of MCA has been characterised in the mouse following MCA administration by intraperitoneal injection. Metabolites of MCA identified in the urine included S-carboxymethylcysteine (33%-43% free and 1%-6% conjugated), thiodiacetic acid (thiodiglycolic acid was found to be the major urinary metabolite of S-carboxymethylcysteine, and most of the glycolate was oxidized to carbon dioxide. The metabolism proceeds probably by enzymatic hydrolysis of the carbon-chlorine bond with the formation of glycolic acid . MCA also conjugates with GSH to form the S-carboxymethyl derivative of GSH, which is then converted to S-carboxymethyl cysteine. In Wistar rats given 50 mg/kg MCA by gavage, thiodiglycolic acid was identified as the major urinary metabolite, accounting for 60% of the administered dose. A greater percentage of administered MCA was excreted as thiodiglycolic acid in rats than in mice; in both species most of the remainder of the dose was excreted as S-carboxymethylcysteine. ... Preliminary pharmacokinetic studies with MCA in rats /showed/ that MCA was rapidly metabolized, and detoxication by conjugation with glutathione appeared to be a major metabolic pathway.
来源:Hazardous Substances Data Bank (HSDB)
代谢
一名17岁的男性在自杀尝试中摄入了大约70毫升三氯乙烯(TRI)... 在接下来的5天里... 收集了血液和尿液样本,并量化了TRI及其代谢物。... 三乙醇三氯乙酸,这些是细胞色素P450介导途径的代谢物,以及来自TRI的谷胱甘肽依赖途径的N-乙酰-S-(1, 2-二乙烯基)-L-半胱氨酸和N-乙酰-S-(2, 2-二乙烯基)-L-半胱氨酸在尿样中被量化。除了这些已知的代谢物外,还确定了氯乙酸二氯乙酸存在于暴露于TRI的人的尿液中...
... A 17-year-old male ... ingested approximately 70 mL trichloroethene (TRI) in a suicide attempt. ... During /5 days/ ... blood and urine were collected and TRI and its metabolites were quantified. ... Trichloroethanol and trichloroacetic acid, metabolites of the cytochrome P450-mediated pathway, and N-acetyl-S-(1, 2-dichlorovinyl)-l-cysteine and N-acetyl-S-(2, 2-dichlorovinyl)-l-cysteine from the glutathione-dependent pathway of TRI were quantified in urine samples. Besides these known metabolites in humans, chloroacetic acid and dichloroacetic acid were identified ... in urine of a human exposed to TRI ...
来源:Hazardous Substances Data Bank (HSDB)
代谢
在一个志愿者案例中,大部分MCA以非代谢形式排出。一小部分与谷胱甘肽反应,并作为结合物随尿液排出。还有一小部分被代谢,并作为二氧化碳随呼出的空气排出。
In one human case the majority of MCA was excreted as nonmetabolized MCA. A minor part reacted with glutathione and was excreted in urine as the conjugate. A small amount was metabolized and excreted as carbon dioxide in exhaled air ... .
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
识别和使用:氯乙酸(MCA)是一种固体。大部分生产的氯乙酸用于制造每年数十万吨的羧甲基纤维素。另一个主要应用是基于芳基羟基醋酸除草剂生产。人类研究:MCA预期的急性及慢性人类健康危害是对心脏系统、中枢神经系统和肾脏的影响。此外,MCA对眼睛、皮肤和呼吸道极为腐蚀性和刺激性。工人接触MCA的急性皮肤暴露可能导致即使在迅速广泛清洗皮肤区域后仍死亡。效果可能会延迟。导致死亡的生化作用机制尚不清楚。显然认为参与的因素包括:(i) 抑制三羧酸循环减少细胞能量供应并增加与乙二酸草酸生产的酸中毒,以及;(ii) 对细胞成分的影响,其中巯基对正常生物活动至关重要。这两种效果可能对中枢神经系统、心血管、肾脏和肝脏产生影响。此外,代谢物乙二酸草酸可能对中枢神经系统和肾脏毒性有所贡献。在使用含有MCA的制剂进行局部疣治疗后,报告了一例关节变形的病例。MCA未能在人类CCRF-CEM细胞中诱导DNA链断裂。动物研究:当只有3%的皮肤暴露时,预期家兔会死亡。接触1分钟后的彻底清洗并未减少死亡率。在大鼠皮下给药MCA(108、135或163 mg/kg)后,低血糖和肺损伤似乎会导致MCA暴露后死亡。MCA在10%存活的小鼠中引起了单次口服毒性剂量(320-380 mg/kg)的前爪僵硬。口服给药300 mg/kg bw MCA的雄性小鼠出现震颤、呼吸抑制,偶尔出现强直和阵挛性惊厥。一些幸存者在24小时后(暴露后)出现了斯特劳勃尾、严重震颤和前肢瘫痪。在怀孕大鼠的妊娠第6至15天通过口服插管给药MCA,剂量为0、17、35、70或140 mg/kg bw/天。软组织畸形的百分比增加了,但与剂量无关。未发现骨骼畸形。在最高剂量组中,发现了心血管系统畸形的统计学显著增加,主要表现为心脏右位。MCA在Salmonella typhimurium菌株(TA98、TA100、TA102、TA104、TA1535、TA1537和TA1538)和Escherichia coli菌株(WP2uvrA和WP2uvrA/pKM101)中,无论有无代谢激活,均不具有诱变性。生态毒性研究:在最近喷洒了MCA钠盐的大葱田附近的树篱中,发现了大量雀形目鸟类,主要是翅雀,它们死亡或濒临死亡。化学分析证实了鸟类接触到了这种化学物质。MCA对螅消化区具有高度的再生长毒性和致畸性。
IDENTIFICATION AND USE: Chloroacetic acid (MCA) is a solid. Most of the chloroacetic acid produced is used to manufacture several hundred thousand tons annually of carboxymethyl cellulose. Another major application is the production of herbicides based on arylhydroxyacetic acids. HUMAN STUDIES: The anticipated acute and chronic human health hazards posed by MCA are effects on the cardiac system, the central nervous system, and kidneys. In addition, MCA is highly corrosive and irritating to the eyes, skin and respiratory tract. Acute dermal exposure of workers to MCA may result in death even after rapid and extensive washing of the skin area. The effects may be delayed. The biochemical mechanism of action resulting in death is not understood. Contributing factors apparently believed to be involved are: (i) the inhibition of the tricarboxylic acid cycle decreasing cellular energy supply and increasing acidosis with glycolic acid and oxalate production, and; (ii) effects on cellular components where sulfhydryl groups are critical for normal biological activity. Both of these effects may contribute to CNS, cardiovascular, renal and hepatic effects. In addition, the metabolites glycolic acid and oxalate may contribute to CNS and renal toxicity. A case of joint deformity reported after the use of a preparation containing MCA for topical wart treatment. MCA did not induce DNA strand breaks in human CCRF-CEM cells. ANIMAL STUDIES: Fatalities among rabbits are expected when only 3% of the skin is exposed. Thorough washing after 1 minute contact did not decrease mortalities. In rats after subcutaneous administration of MCA (108, 135 or 163 mg/kg) hypoglycemia and lung injury appear to cause death in response to MCA exposure. MCA caused front paw rigidity in 10% of mice surviving a single oral toxic dose (320-380 mg/kg). Male mice orally administered 300 mg/kg bw MCA showed tremors, respiratory depression, and occasionally tonic and clonic convulsions. Some survivors had a Straub tail, severe tremors, and front limb paralysis after 24 hours (after exposure). Pregnant rats were dosed MCA by oral intubation on gestation days 6 to 15 with 0, 17, 35, 70, or 140 mg/kg bw/day. The percentage of soft tissue malformations was increased, however not dose-related. No skeletal malformations were found. In the highest dose-group a statistically significant increase of malformations of the cardiovascular system, comprising predominantly levocardia, was found. MCA was not mutagenic in Salmonella typhimurium strains (TA98, TA100, TA102, TA104, TA1535, TA1537, and TA1538) and Escherichia coli strains (WP2uvrA and WP2uvrA/pKM101) with or without metabolic activation. ECOTOXICITY STUDIES: A large number of passerine birds, mainly greenfinches, were found dead or dying in a hedgerow close to a field of onions recently sprayed with sodium salt of MCA. Chemical analysis confirmed the exposure of the birds to the chemical. MCA had high regeneration toxicity with teratogenicity in Hydra digestive region.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
A4:不能分类为人类致癌物。
A4: Not classifiable as a human carcinogen.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 暴露途径
这种物质可以通过吸入、皮肤接触和摄入被身体吸收。
The substance can be absorbed into the body by inhalation, through the skin and by ingestion.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
毒理性
  • 吸入症状
喉咙痛。咳嗽。呼吸急促。胸骨后烧灼感。呼吸困难。症状可能有所延迟。更多信息请参阅“摄入”。
Sore throat. Cough. Shortness of breath. Burning sensation behind the breastbone. Laboured breathing. Symptoms may be delayed. Further see Ingestion.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
毒理性
  • 皮肤症状
可能被吸收!发红。疼痛。皮肤烧伤。更多信息请见吞咽。
MAY BE ABSORBED! Redness. Pain. Skin burns. Further see Ingestion.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
吸收、分配和排泄
氯乙酸(MCA)的分布、代谢和排泄在成年雄性大鼠中进行了研究,分别采用了亚毒性剂量(10 mg/kg)和毒性剂量(75 mg/kg)。大鼠通过静脉注射14(C)MCA,并单独饲养。收集尿液和粪便。...放射性同位素在样本中的分布显示出MCA非常迅速地分布到组织中。血浆、肝脏、心脏、肺和棕色脂肪中MCA的浓度相互平行,而在大脑和胸腺中则不是。组织中MCA的浓度与剂量不成比例。MCA从血浆中的消除需要通过两个室模型来模拟。血浆中大部分放射性同位素是母体MCA。在毒性剂量下,消除速率常数(K(10))和分布速率常数(K(12))显著降低。毒性剂量的消除进一步减缓,因为MCA在外周室中的滞留增加,这通过大多数组织中平均滞留时间的增加得到指示。很大一部分剂量在胃肠道中被发现,其中几乎全部被重新吸收。试图通过使用活性炭考来烯胺阻断肠肝循环来降低毒性,但未能成功。胆汁中发现的放射性同位素与一个比母体化合物更具极性的代谢物相关。很大一部分剂量(分别为73%和59%)在尿液中被发现,其中55至68%是母体MCA。MCA毒性的速率决定步骤被确定为肝脏对其的解毒作用...
Distribution, metabolism, and excretion of monochloroacetic acid (MCA) were examined in adult male rats at a subtoxic (10 mg/kg) and a toxic (75 mg/kg) dose. Rats were injected i.v. with 14(C)MCA and housed individually. Urine and feces were collected. ... Radioactivity in aliquots showed very rapid distribution of MCA to tissues. Concentrations of MCA in plasma, liver, heart, lungs, and brown fat paralleled each other, whereas those in brain and thymus did not. There was no dose proportionality in tissue concentrations. Elimination of MCA from plasma required modeling by two compartments. Most of the radioactivity found in plasma was parent MCA. Elimination rate constant (K(10)) and distribution rate constant (K(12)) were greatly reduced at the toxic dose. Elimination of the toxic dose was further retarded due to increased retention of MCA in the peripheral compartment as indicated by increased mean residence times in most tissues. A very large fraction of dose was found in the gastrointestinal tract, almost all of which was reabsorbed. Attempts to reduce toxicity by blocking the enterohepatic circulation with activated charcoal or cholestyramine failed. Radioactivity found in bile was associated with one metabolite more polar than the parent compound. A very large fraction of dose (73 and 59%) was found in urine, 55 to 68% of which was parent MCA. The rate-determining step in the toxicity of MCA was identified as its detoxification by the liver...
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
实验大鼠单次口服(10毫克/千克亚毒性或225毫克/千克毒性,LD20)或皮肤给药(125毫克/千克,LD20)(14)C-一醋酸(MCA),并测定了给药后不同时间点(0.25、0.75、2、4、8、16和32小时)血浆、组织和排泄物中的放射性。在亚毒性口服剂量下,(14)C-MCA的浓度在2小时时达到剂量的0.1%。大多数组织的MCA浓度与血浆相似,但有少数例外。在毒性口服剂量下,组织浓度最初低于亚毒性剂量后的浓度,因为胃在8小时内保留了大部分毒性剂量。血浆浓度在0.25小时内达到峰值,没有明显的后续吸收阶段。大部分皮肤给药剂量迅速渗透进入皮肤(>95%在0.25小时内)并留在那里缓慢释放。血浆中的浓度在0.75小时达到剂量的0.36%,并保持恒定至4小时。组织浓度在2到4小时达到峰值。在0.75小时内,通过肝脏代谢并通过胆汁排出的皮肤吸收剂量的9%,随后全部被重新吸收。到0.75小时时,MCA的2%出现在结肠中,这显然是通过逆行运动直接通过GI壁传输的结果。口服给药的大鼠小肠中回收的约70-80%的放射性是母化合物。粪便排泄可以忽略不计(<=1%)。尿液排泄占剂量的64-72%。在毒性口服剂量下,尿液排泄最初缓慢,在8小时后加速。口服给药的血浆半衰期为2小时,皮肤给药为4小时。口服低剂量和高剂量的差异动力学是由于胃排空延迟,而不是代谢途径的饱和。剂量反应曲线陡峭,在200(口服)和100(皮肤)毫克/千克以下没有明显的毒性(昏迷/死亡),而450(LD50 > 400和< 450)和175(LD50 145)毫克/千克口服和皮肤暴露后分别出现100%的死亡率。
Rats were administered a single oral (10 (subtoxic) or 225 (toxic, LD20) mg/kg) or dermal (125 mg/kg, LD20) dose of (14)C-monochloroacetic acid (MCA) and the time-course (0.25, 0.75, 2, 4, 8, 16, and 32 hr postadministration) of radioactivity was determined in plasma, tissues, and excreta. At the subtoxic oral dose, concentration of (14)C-MCA peaked at 0.1% of dose by 2 hr. Most tissue profiles of MCA paralleled that of plasma with few exceptions. At the toxic oral dose, tissue concentrations remained initially below those seen after the subtoxic dose, because stomach retained most of the toxic dose for up to 8 hr. Peak plasma concentration was reached within 0.25 hr without an apparent subsequent uptake phase. Most of the dermal dose rapidly penetrated into the skin (>95% within 0.25 hr) and remained sequestered there and released slowly. Concentration in plasma peaked at 0.36% of dose by 0.75 hr and remained constant for up to 4 hr. Peak tissue concentrations were reached between 2 and 4 hr. Within 0.75 hr, 9% of the dermally absorbed dose was metabolized by liver and eliminated through bile, all of which was subsequently reabsorbed. Two percent of MCA appeared in colon by 0.75 hr, apparently as a result of direct transport through GI-wall in retrograde movement. About 70-80% of radioactivity recovered from the small intestine of orally dosed rats was parent compound. Fecal elimination was negligible (</=1%). Urinary excretion was 64-72% of the dose. At the toxic oral dose, urinary excretion was initially slow and accelerated after 8 hr. The plasma half-life was 2 hr for oral and 4 hr for dermal administration. Differential oral low and high dose kinetics was due to delayed stomach emptying and not to saturation of metabolic pathways. Dose-responses were steep, with no overt toxicity (coma/death) up to 200 (oral) and 100 (dermal) mg/kg, whereas 100% mortality occurred at 450 (LD50 > 400 and < 450) and 175 (LD50 145) mg/kg after oral and dermal exposure, respectively.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
醋酸的分布情况在给予大鼠单次口服剂量0.1毫摩尔/千克体重[1-(14)C]CA,通过灌胃进行研究。在处理后的4、8、12、24和48小时,牺牲动物。在不同组织中确定的(14)C标记的分布情况表明,CA被迅速吸收并从体内排出。与其它组织相比,肠和肾脏的消除期似乎较快。在处理后的4和8小时,肠和肾脏中检测到的放射性最高,其次是肝脏、脾脏、睾丸、肺、大脑和心脏,呈递减顺序。一组大鼠接受了一次口服剂量为1毫摩尔/千克(1-(14)C)CA的处理,通过灌胃,在暴露后24小时也被牺牲,以研究较高剂量对(1-(14)C)CA分布的影响。(14)C标记在两种剂量平上的分布表明,CA的毒动学性质是剂量依赖的。另一组大鼠每天接受1毫摩尔/千克(1-(14)C)CA的处理,连续三天,在最后一次给药后24小时也被牺牲,以评估CA及其代谢物在组织中的生物累积性质。与给药次数相比,(14)C标记的积累并没有预期的那么大。(14)C标记在透析血浆中的测定表明,(14)C标记在体内与血浆蛋白结合,通过亲和色谱测定,白蛋白约占65%...
Distribution of monochloroacetic acid (CA) was studied in rats given a single oral dose of 0.1 mmole/kg body weight [1-(14)C]CA, by gavage. The animals were sacrificed at 4, 8, 12, 24 and 48 hr following the treatment. The distribution of (14)C-label, determined in different tissues, suggests that CA is rapidly absorbed and eliminated from the body. The elimination phase appears to be fast for intestine and kidney as compared to other tissues. Maximum radioactivity was detected in intestine and kidney at 4 and 8 hr following the treatment which was followed by liver, spleen, testes, lung, brain and heart in a decreasing order. A group of rats treated with a single oral dose of 1 mmole/kg (1-(14)C)CA, by gavage, was also sacrificed at 24 hr following the exposure to study the effect of a higher dose on distribution of (1-(14)C)CA. The distribution of (14)C-label at both dose levels indicates that toxicokinetic properties of CA are dose-dependent. Another group of rats administered 1 mmole/kg (1-(14)C) CA daily for three days was also sacrificed at 24 hr following the last dose to evaluate the bioaccumulating properties of CA and/or its metabolites in the tissues. As compared to the number of doses given, the accumulation of (14)C-label was not as large as expected. (14)C-Label determined in the dialyzed plasma, suggests an in vivo binding of (14)C-label to plasma proteins where albumin accounted for about 65% as determined by affinity chromatography...
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
为了理解单醋酸(MCA)的毒性机制,通过全身自动放射性显像技术研究了(1-(14)C)MCA在大鼠体内的组织分布。雄性Sprague-Dawley大鼠通过尾静脉注射了(1-14C)MCA的示踪剂量(6.8微克/100克(40微居里)体重),在不同的时间间隔(5分钟、1小时、4小时、12小时、24小时和48小时)处死。在5分钟时,肾脏皮质和胃壁迅速积聚了(14)C-活动。放射性物质迅速从循环系统中移除。心肌组织中积聚了高量的(14)C-活动。肝脏也装载了MCA及其代谢物。在(14)MCA给药后1小时,放射性物质大量排入小肠腔内。在大脑、胸腺、唾液腺和舌头上(14)C-活动的积聚在1小时时显著。在4小时后,肝脏和其他组织开始消除大部分放射性物质。然而,与其他组织相反,中枢神经系统、胸腺和胰腺在较晚的时间段开始积聚放射性物质。这些观察结果表明,MCA及其代谢物在早期时间段积聚在溶性组织中,在晚期时间段积聚在亲脂性组织中。
... To understand the mechanism of monochloroacetic acid (MCA) toxicity, ... the tissue distribution of (1-(14)C)MCA in rats /was studied/ by a whole-body autoradiographic technique. Male Sprague-Dawley rats were given a tracer dose of (1-14C)MCA (6.8 ug/100 g (40 uCi) body weight) by tail vein and euthanized at different time intervals (5 min, 1, 4, 12, 24 and 48 hr). ... At 5 min, there was a rapid accumulation of (14)C-activity in the kidney cortex and stomach walls. The radioactivity was rapidly removed from the circulation. There was high accumulation of (14)C-activity in the myocardial tissues. The liver was also loaded with MCA and/or its metabolites. After 1 hr following administration of (14)MCA, radioactivity was extensively excreted into the small intestinal lumen. The accumulation of (14)C-activity in the brain, thymus, salivary glands and tongue was prominent at 1 hr. After 4 hr the liver and other tissues started to eliminate most of the radioactivity. Contrary to other tissues, however, the central nervous system, thymus and pancreas started to accumulate the radioactivity at later time periods. These observations suggest the accumulation of MCA and/or its metabolites into hydrophilic tissues at earlier time periods and into lipophilic tissues at later times.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险等级:
    6.1
  • 安全说明:
    S16,S23,S26,S36,S37,S45,S61
  • 危险品运输编号:
    UN 1751 6.1/PG 2
  • WGK Germany:
    2
  • 海关编码:
    29154000
  • 危险类别:
    6.1
  • 危险品标志:
    T
  • 危险类别码:
    R34,R25,R50
  • RTECS号:
    AF8575000
  • 包装等级:
    II
  • 储存条件:
    储存注意事项: - 储存于阴凉、通风良好的专用库房内,并实行“双人收发、双人保管”制度。 - 远离火种和热源,库温不超过32℃,相对湿度不超过80%。 - 包装应密封。 - 应与氧化剂、还原剂、碱类及食用化学品分开存放,切忌混储。 - 配备相应的消防器材。 - 储存区应备有合适的材料以收容泄漏物。

SDS

SDS:6eaee8c21f1773ce87d8e6f8737af035
查看
国标编号: 81603
CAS: 79-11-8
中文名称: 氯乙酸
英文名称: Chloroacetic acid;Monoehloroac
别 名: 醋酸;一醋酸
分子式: C 2 H 3 Cl 2 O;ClCH 2 COOH
分子量: 94.49
熔 点: 63℃ 沸点:189℃
密 度: 相对密度(=1)1.58;
蒸汽压: 0.67kPa/71.5℃ 闪点:126℃
溶解性: 溶于乙醇乙醚氯仿二硫化碳
稳定性: 稳定
外观与性状: 无色结晶,有潮解性
危险标记: 20(酸性腐蚀品)
用 途: 用于制农药和作有机合成中间体


2.对环境的影响:

一、健康危害
侵入途径:吸入、食入、经皮吸收。
健康危害:接触氯乙酸烟雾,可有眼部疼痛、流泪、羞明、结膜充血等症状及上呼吸道刺激症状。皮肤接触本品溶液后,出现疱伴有剧痛,随后,疱吸收,出现过度角化,经数次脱皮治愈。经常接触本品酸雾者有头痛、头晕现象。
二、毒理学资料及环境行为
毒性:属中等毒类。
急性毒性:LD 50 76mg/kg(大鼠经口);255mg/kg(小鼠经口)LC 50 180mg/m 3 (大鼠吸入)
亚急性和慢性毒性:大鼠饲料中含1%的氯乙酸时,在200天实验期内,生长缓慢,发现肝糖元增加,其它无特殊损害。
危险特性:遇明火、高热可燃。与强氧化剂可发生反应。受高热分解产生有毒的腐蚀性气体。
燃烧(分解)产物:一氧化碳二氧化碳氯化氢光气

3.现场应急监测方法:

4.实验室监测方法:
液-液萃取气相色谱法《和废标准检验法》(20版)

5.环境标准:
前苏联 车间空气中有害物质的最高容许浓度 1mg/m 3
前苏联(1975)污排放标准 100mg/L

6.应急处理处置方法:
一、泄漏应急处理
隔离泄漏污染区,限制出入。建议应急处理人员戴自给式呼吸器,穿防酸碱工作服。不要直接接触泄漏物,用洁清的铲子收集于干燥净洁有盖的容器中,运至废物处理场所。也可以用大量冲洗,经稀释的洗放入废系统。大量泄漏,收集回收或无害处理后废弃。
二、防护措施
呼吸系统防护:可能接触其烟雾时,应该佩带防毒面具。紧急事态抢救或逃生时,佩带自给式呼吸器。
眼睛防护:戴化学安全防护眼镜。
防护服:穿工作服(防腐材料制作)。
手防护:戴橡皮手套。
其它:工作后,淋浴更衣。注意个人清洁卫生。
三、急救措施
皮肤接触:立即用冲洗至少15分钟。若有灼伤,就医治疗。
眼睛接触:立即提起眼睑,用流动清或生理盐冲洗至少15分钟。就医。
吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。
食入:误服者立即漱口,给饮牛奶或蛋清。就医。
灭火方法:雾状、泡沫、二氧化碳、砂土。





制备方法与用途

制备方法

工业生产氯乙酸主要有三种主要方法。

  1. 乙酸化法:在的卤化物等催化剂存在下,用气将乙酸直接化而得。除生成氯乙酸外,还有深度化的副产物如二氯乙酸三氯乙酸。此方法原料消耗较低,工艺简单,氯乙酸产率可达92%。

  2. 三氯乙烯合法:以93%的硫酸为催化剂,在约160-180℃下反应。这种方法可得高纯度的氯乙酸,产率可达90%,但副产盐酸较多。

  3. 乙醇氧化法:在60℃用60%的硝酸氧化,收率超过90%。北美洲以乙酸化法为主,西欧则偏爱三氯乙烯合法。我国采用乙酸化法生产:将定量的冰醋酸加入反应锅中,并以冰醋酸重量的3.5%黄粉作为催化剂进行预热至90℃以上,开始通入适量气,两只反应锅串联通,主锅控制温度为98±2℃,副锅为85-90℃。通速度约70kg/h,待反应锅内物料的相对密度达到1.350(80℃)时即到达终点。将反应物抽至酸罐,冷却结晶。液相包括少量乙酸二氯乙酸氯化硫和少量氯乙酸,分离出结晶体后,在38℃以下把母液抽尽即可得到成品。每吨产品约产生150公斤母液,可进一步化制成二氯乙酸二氯乙酸甲酯氯仿三氯乙烯合法同时进行的加成和解:反应温度160-180℃,保持硫酸浓度在93%,控制三氯乙烯的比例。硫酸消耗不超过50kg,副产30%盐酸2.57吨。工业品氯乙酸为无色或略带淡黄色结晶体。原料消耗定额:冰醋酸(98%)730kg/t、气860kg/t、硫磺26kg/t。

经过上述方法之一制备的氯乙酸可通过精制进一步纯化,通常使用氯仿四氯化碳、苯或进行重结晶。然后将产物放入真空干燥器中用五氧化二或浓硫酸干燥,并在真空或干燥氮气中储存。

合成制备方法
  1. 工业生产氯乙酸的主要方法
    • 采用的卤化物等催化剂,通过气将乙酸直接化而得。副产物包括二氯乙酸三氯乙酸
    • 使用93%硫酸为催化剂,在160-180℃下进行三氯乙烯合法,可获得高纯度的氯乙酸,产率可达90%,但会产生较多盐酸
    • 在60℃用60%硝酸氧化法生成乙醇,其收率超过90%。此方法在北美洲以乙酸化法为主,在西欧则偏好三氯乙烯合法。我国使用乙酸化法制备:将冰醋酸加入反应锅并添加3.5%的黄粉作为催化剂进行预热至90℃以上,开始通入适量气。主锅控制温度为98±2℃,副锅保持在85-90℃,通速度约70kg/h。待物料密度达到1.350(80℃)时即完成反应。随后将反应物抽至酸罐冷却结晶分离出结晶体,并在38℃以下抽尽母液获得成品。

这些方法中的每一种都有其特定的优势和应用领域,具体选择哪种方法取决于实际生产条件与需求。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    氯乙酸 在 potassium peroxomonosulphate 作用下, 生成 二氯甲烷
    参考文献:
    名称:
    Panizzon, Helvetica Chimica Acta, 1932, vol. 15, p. 1191
    摘要:
    DOI:
  • 作为产物:
    描述:
    2-氯乙醇硝酸 作用下, 以85%的产率得到氯乙酸
    参考文献:
    名称:
    Synthesis of Monochloroacetic Acid from Ethylene Chlorohydrin
    摘要:
    The possibility of preparing monochloroacetic acid by oxidation of ethylene chlorohydrin with nitric acid was examined.
    DOI:
    10.1023/b:rjac.0000012682.03958.d4
  • 作为试剂:
    描述:
    喹啉(S,S)-N-(对甲苯磺酰)-1,2-二苯乙烷二胺(对异丙基苯)氯化钌(II) 、 5% Pd-CaCO3 、 氢气氯乙酸 、 lithium hydroxide 作用下, 以 四氢呋喃乙酸乙酯异丙醇 为溶剂, 反应 22.25h, 生成
    参考文献:
    名称:
    10.1016/j.bmcl.2024.129857
    摘要:
    DOI:
    10.1016/j.bmcl.2024.129857
点击查看最新优质反应信息

文献信息

  • 腈及其相应胺的制造方法
    申请人:中国石油化工股份有限公司
    公开号:CN104557610B
    公开(公告)日:2018-04-27
    本发明涉及一种腈的制造方法,与现有技术相比,具有源用量显著降低、环境压力小、能耗低、生产成本低、腈产物的纯度和收率高等特点,并且能够获得结构更为复杂的腈。本发明还涉及由该腈制造相应胺的方法。
  • Allenone-Mediated Racemization/Epimerization-Free Peptide Bond Formation and Its Application in Peptide Synthesis
    作者:Zhengning Wang、Xuewei Wang、Penghui Wang、Junfeng Zhao
    DOI:10.1021/jacs.1c04614
    日期:2021.7.14
    peptide synthesis (SPPS). The robustness of the allenone-mediated peptide bond formation was showcased incisively by the synthesis of carfilzomib, which involved a rare racemization-/epimerization-free N to C peptide elongation strategy. Furthermore, the successful synthesis of the model difficult peptide ACP (65–74) on a solid support suggested that this method was compatible with SPPS. This method combines
    Allenone 首次被鉴定为一种高效的肽偶联剂。肽键以α-羰基乙烯基酯为关键中间体形成,其形成和随后的解以无外消旋/差向异构化的方式自发进行。丙二烯酮偶联试剂不仅对简单酰胺和二肽的合成有效,而且还适用于肽片段缩合和固相肽合成 (SPPS)。卡非佐米的合成充分展示了丙二烯酮介导的肽键形成的稳健性,该合成涉及一种罕见的无消旋化/差向异构化的 N 到 C 肽延伸策略。此外,在固体支持物上成功合成模型困难肽 ACP (65-74) 表明该方法与 SPPS 兼容。该方法结合了传统活性酯和偶联剂的优点,同时克服了两种策略的缺点。因此,这种丙二烯酮介导的肽键形成策略代表了肽合成的颠覆性创新。
  • 안트라센 유도체 화합물 및 이를 포함하는 유기전계발광소자
    申请人:SFC CO., LTD. 에스에프씨 주식회사(120060087061) Corp. No ▼ 135511-0105889BRN ▼134-81-54429
    公开号:KR102121583B1
    公开(公告)日:2020-06-10
    본 발명은 신규한 유기전계발광 화합물에 관한 것으로서, 하기 [화학식 1] 내지 [화학식 2]로 표시되는 화합물인 것을 특징으로 하고, 본 발명에 따른 유기전계발광 화합물은 높은 유리전이온도를 가져서 열적 안정성이 우수함과 동시에 이를 유기전계발광소자에 채용시 저전압 구동, 고휘도, 고색순도 및 장수명을 나타내는 유기전계발광소자의 구현이 가능하다. [화학식 1] [화학식 2]
    本发明涉及一种新型有机电致发光化合物,其特征在于其为化合物,其表示为[化学式1]至[化学式2],根据本发明的有机电致发光化合物具有高玻璃化转变温度,具有优异的热稳定性,并且当将其应用于有机电致发光器件时,可以实现低驱动电压、高亮度、高色纯度和长寿命的有机电致发光器件。 [化学式1] [化学式2]
  • Rational design, synthesis and evaluation of new azido-ester structures as green energetic plasticizers
    作者:Nasser Sheibani、Narges Zohari、Reza Fareghi-Alamdari
    DOI:10.1039/d0dt02250k
    日期:——
    Computer-aided molecular design (CAMD) is a well-known tool for the theoretical assessment of chemical structures before their experimental synthesis. In this study, we used this method to consider the important criteria for a chemical structure as an energetic plasticizer for an energetic azido binder. The number of new azido-ester structures were initially designed, and their physicochemical and
    计算机辅助分子设计(CAMD)是在化学合成实验之前对化学结构进行理论评估的著名工具。在这项研究中,我们使用这种方法来考虑化学结构作为高能叠氮基粘合剂的高能增塑剂的重要标准。新叠氮基酯结构的数量最初设计,并测定其物理化学和能量性质通过通过分子动力学模拟和基于机器学习的方法进行理论计算。考虑到几个标准之间的平衡,然后选择,合成和表征了这些理论化学结构中的两个(包括GTAA甘油三(叠氮乙酸酯))和TEGBAA(三乙二醇双(叠氮乙酸酯))。实验和理论结果的比较,以评估这些新型叠氮基酯增塑剂的理化性质,表明两种方法之间可以接受。最后,使用流变学和DSC分析研究了这两种新型叠氮基酯增塑剂缩水甘油叠氮化物聚合物(GAP)的流变学和热学性能的相容性和效率,并与一些常见的高能增塑剂进行了比较。
  • [EN] PROCESSES FOR THE PREPARATION OF FUNGICIDAL COMPOUNDS<br/>[FR] PROCÉDÉS DE PRÉPARATION DE COMPOSÉS FONGICIDES
    申请人:GILEAD APOLLO LLC
    公开号:WO2018161008A1
    公开(公告)日:2018-09-07
    Provided herein are processes for the preparation of stereomerically enriched compounds of Formulas I-014, I-020, I-064, I-074, I-082, I-089, I-090, I-095, I-171, I-181, I-184, I-186, I-189, I-191, I-192, I-193, I-205, I-206, I-208, I-211, I-212, I-213, I-220, I-229, I-231, I-233, I-234, I-246, I-251, I-258, I-259, I-262, I-263, I-285, I-323 and I-400. The compounds described herein exhibit activity as pesticides and are useful, for example, in methods for the control of fungal pathogens and diseases caused by fungal pathogens in plants. A preferred process is directed to preparing a stereomerically enriched compound of Formula V-1 or V-2-F by assymetrical reduction in the presence of a chiral organometallic catalyst.
    本文提供了制备具有I-014、I-020、I-064、I-074、I-082、I-089、I-090、I-095、I-171、I-181、I-184、I-186、I-189、I-191、I-192、I-193、I-205、I-206、I-208、I-211、I-212、I-213、I-220、I-229、I-231、I-233、I-234、I-246、I-251、I-258、I-259、I-262、I-263、I-285、I-323和I-400的立体富集化合物的方法。本文描述的化合物表现出作为杀虫剂的活性,并且在例如用于控制植物中由真菌病原体引起的真菌病害的方法中是有用的。一种首选的方法是通过在手性有机属催化剂存在下进行不对称还原来制备具有V-1或V-2-F式的立体富集化合物。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
cnmr
ir
raman
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸