Multivalent oleanolic acid human serum albumin conjugate as nonglycosylated neomucin for influenza virus capture and entry inhibition
摘要:
We report the synthesis of multivalent oleanolic acid (OA) protein conjugates as nonglycosylated neomucin mimic for the capture and entry inhibition of influenza viruses. Oleanolic acid derivatives bearing an amine-terminated linker were synthesized by esterification of carboxylic acid and further grafted onto the human serum albumin (HSA) via diethyl squarate method. The binding of hemagglutinin (HA) on the virion surface to the synthetic neomucin was evaluated by hemagglutination inhibition assay. The influenza virus capture ability of the PEGylated OA-HSA conjugate was further investigated by Dynamic Light Scattering (DLS), virus capture assay and Isothermal Titration Calorimeter (ITC) techniques. The pronounced agglutination of viral particles, the high capture efficiency and affinity constant indicate that this neoprotein is comparable to natural glycosylated mucin, suggesting that this material could potentially be used as anti-infective barriers to prevent virus from invading host cells. The study also rationalizes the feasibility of antiviral drug development based on OA or other antiviral small molecules conjugated protein strategies. (C) 2017 Elsevier Masson SAS. All rights reserved.
Multivalent oleanolic acid human serum albumin conjugate as nonglycosylated neomucin for influenza virus capture and entry inhibition
摘要:
We report the synthesis of multivalent oleanolic acid (OA) protein conjugates as nonglycosylated neomucin mimic for the capture and entry inhibition of influenza viruses. Oleanolic acid derivatives bearing an amine-terminated linker were synthesized by esterification of carboxylic acid and further grafted onto the human serum albumin (HSA) via diethyl squarate method. The binding of hemagglutinin (HA) on the virion surface to the synthetic neomucin was evaluated by hemagglutination inhibition assay. The influenza virus capture ability of the PEGylated OA-HSA conjugate was further investigated by Dynamic Light Scattering (DLS), virus capture assay and Isothermal Titration Calorimeter (ITC) techniques. The pronounced agglutination of viral particles, the high capture efficiency and affinity constant indicate that this neoprotein is comparable to natural glycosylated mucin, suggesting that this material could potentially be used as anti-infective barriers to prevent virus from invading host cells. The study also rationalizes the feasibility of antiviral drug development based on OA or other antiviral small molecules conjugated protein strategies. (C) 2017 Elsevier Masson SAS. All rights reserved.
Synthesis and Evaluation of C-28 Oleanolic Acid Derivatives as Inhibitors of Glycogen Phosphorylase
作者:Keguang Cheng、Chao Wang、Jun Liu、Juan Xie、Hongbin Sun
DOI:10.2174/157018010790225921
日期:2010.2.1
Synthesis and evaluation of C-28 oleanolicacid derivatives as novel inhibitors of glycogenphosphorylase have been described. The results of glycogenphosphorylase inhibition assay and structure-activity relationship (SAR) analysis are also discussed.
We report the synthesis of multivalent oleanolic acid (OA) protein conjugates as nonglycosylated neomucin mimic for the capture and entry inhibition of influenza viruses. Oleanolic acid derivatives bearing an amine-terminated linker were synthesized by esterification of carboxylic acid and further grafted onto the human serum albumin (HSA) via diethyl squarate method. The binding of hemagglutinin (HA) on the virion surface to the synthetic neomucin was evaluated by hemagglutination inhibition assay. The influenza virus capture ability of the PEGylated OA-HSA conjugate was further investigated by Dynamic Light Scattering (DLS), virus capture assay and Isothermal Titration Calorimeter (ITC) techniques. The pronounced agglutination of viral particles, the high capture efficiency and affinity constant indicate that this neoprotein is comparable to natural glycosylated mucin, suggesting that this material could potentially be used as anti-infective barriers to prevent virus from invading host cells. The study also rationalizes the feasibility of antiviral drug development based on OA or other antiviral small molecules conjugated protein strategies. (C) 2017 Elsevier Masson SAS. All rights reserved.