摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-({2-[1-(4-isobutylphenyl)ethyl]-1H-benzimidazol-1-yl}methyl)phenol | 1382487-84-4

中文名称
——
中文别名
——
英文名称
2-({2-[1-(4-isobutylphenyl)ethyl]-1H-benzimidazol-1-yl}methyl)phenol
英文别名
2-[[2-[1-[4-(2-Methylpropyl)phenyl]ethyl]benzimidazol-1-yl]methyl]phenol
2-({2-[1-(4-isobutylphenyl)ethyl]-1H-benzimidazol-1-yl}methyl)phenol化学式
CAS
1382487-84-4
化学式
C26H28N2O
mdl
——
分子量
384.521
InChiKey
MQAVCVGDMLXZFA-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    6.6
  • 重原子数:
    29
  • 可旋转键数:
    6
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.27
  • 拓扑面积:
    38
  • 氢给体数:
    1
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2-({2-[1-(4-isobutylphenyl)ethyl]-1H-benzimidazol-1-yl}methyl)phenolpotassium carbonate 、 lithium hydroxide 作用下, 以 四氢呋喃乙腈 为溶剂, 反应 2.5h, 生成
    参考文献:
    名称:
    The novel benzimidazole derivative BRP-7 inhibits leukotriene biosynthesisin vitroandin vivoby targeting 5-lipoxygenase-activating protein (FLAP)
    摘要:
    Background and PurposeLeukotrienes (LTs) are inflammatory mediators produced via the 5‐lipoxygenase (5‐LOX) pathway and are linked to diverse disorders, including asthma, allergic rhinitis and cardiovascular diseases. We recently identified the benzimidazole derivative BRP‐7 as chemotype for anti‐LT agents by virtual screening targeting 5‐LOX‐activating protein (FLAP). Here, we aimed to reveal the in vitro and in vivo pharmacology of BRP‐7 as an inhibitor of LT biosynthesis.Experimental ApproachWe analysed LT formation and performed mechanistic studies in human neutrophils and monocytes, in human whole blood (HWB) and in cell‐free assays. The effectiveness of BRP‐7 in vivo was evaluated in rat carrageenan‐induced pleurisy and mouse zymosan‐induced peritonitis.Key ResultsBRP‐7 potently suppressed LT formation in neutrophils and monocytes and this was accompanied by impaired 5‐LOX co‐localization with FLAP. Neither the cellular viability nor the activity of 5‐LOX in cell‐free assays was affected by BRP‐7, indicating that a functional FLAP is needed for BRP‐7 to inhibit LTs, and FLAP bound to BRP‐7 linked to a solid matrix. Compared with the FLAP inhibitor MK‐886, BRP‐7 did not significantly inhibit COX‐1 or microsomal prostaglandin E2 synthase‐1, implying the selectivity of BRP‐7 for FLAP. Finally, BRP‐7 was effective in HWB and impaired inflammation in vivo, in rat pleurisy and mouse peritonitis, along with reducing LT levels.Conclusions and ImplicationsBRP‐7 potently suppresses LT biosynthesis by interacting with FLAP and exhibits anti‐inflammatory effectiveness in vivo, with promising potential for further development.
    DOI:
    10.1111/bph.12625
  • 作为产物:
    描述:
    N-(2-aminophenyl)-2-(4-isobutylphenyl)propanamide 在 溶剂黄146 作用下, 反应 4.0h, 生成 2-({2-[1-(4-isobutylphenyl)ethyl]-1H-benzimidazol-1-yl}methyl)phenol
    参考文献:
    名称:
    Identification of novel benzimidazole derivatives as inhibitors of leukotriene biosynthesis by virtual screening targeting 5-lipoxygenase-activating protein (FLAP)
    摘要:
    Pharmacological suppression of leukotriene biosynthesis by 5-lipoxygenase (5-LO)-activating protein (FLAP) inhibitors is a promising strategy to intervene with inflammatory, allergic and cardiovascular diseases. Virtual screening targeting FLAP based on a combined ligand-and structure-based pharmacophore model led to the identification of 1-(2-chlorobenzyl)-2-(1-(4-isobutylphenyl)ethyl)-1H-benzimidazole (7) as developable candidate. Compound 7 potently suppressed leukotriene formation in intact neutrophils (IC50 = 0.31 mu M) but essentially failed to directly inhibit 5-LO suggesting that interaction with FLAP causes inhibition of leukotriene synthesis. For structural optimization, a series of 46 benzimidazole-based derivatives of 7 were synthesized leading to more potent analogues (70-72, 82) with IC50 = 0.12-0.19 mu M in intact neutrophils. Together, our results disclose the benzimidazole scaffold bearing an ibuprofen fingerprint as a new chemotype for further development of anti-leukotriene agents. (C) 2012 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmc.2012.04.048
点击查看最新优质反应信息

文献信息

  • Identification of novel benzimidazole derivatives as inhibitors of leukotriene biosynthesis by virtual screening targeting 5-lipoxygenase-activating protein (FLAP)
    作者:Erden Banoglu、Burcu Çalışkan、Susann Luderer、Gökçen Eren、Yagmur Özkan、Wolfram Altenhofen、Christina Weinigel、Dagmar Barz、Jana Gerstmeier、Carlo Pergola、Oliver Werz
    DOI:10.1016/j.bmc.2012.04.048
    日期:2012.6
    Pharmacological suppression of leukotriene biosynthesis by 5-lipoxygenase (5-LO)-activating protein (FLAP) inhibitors is a promising strategy to intervene with inflammatory, allergic and cardiovascular diseases. Virtual screening targeting FLAP based on a combined ligand-and structure-based pharmacophore model led to the identification of 1-(2-chlorobenzyl)-2-(1-(4-isobutylphenyl)ethyl)-1H-benzimidazole (7) as developable candidate. Compound 7 potently suppressed leukotriene formation in intact neutrophils (IC50 = 0.31 mu M) but essentially failed to directly inhibit 5-LO suggesting that interaction with FLAP causes inhibition of leukotriene synthesis. For structural optimization, a series of 46 benzimidazole-based derivatives of 7 were synthesized leading to more potent analogues (70-72, 82) with IC50 = 0.12-0.19 mu M in intact neutrophils. Together, our results disclose the benzimidazole scaffold bearing an ibuprofen fingerprint as a new chemotype for further development of anti-leukotriene agents. (C) 2012 Elsevier Ltd. All rights reserved.
  • The novel benzimidazole derivative BRP-7 inhibits leukotriene biosynthesis<i>in vitro</i>and<i>in vivo</i>by targeting 5-lipoxygenase-activating protein (FLAP)
    作者:C Pergola、J Gerstmeier、B Mönch、B Çalışkan、S Luderer、C Weinigel、D Barz、J Maczewsky、S Pace、A Rossi、L Sautebin、E Banoglu、O Werz
    DOI:10.1111/bph.12625
    日期:2014.6
    Background and PurposeLeukotrienes (LTs) are inflammatory mediators produced via the 5‐lipoxygenase (5‐LOX) pathway and are linked to diverse disorders, including asthma, allergic rhinitis and cardiovascular diseases. We recently identified the benzimidazole derivative BRP‐7 as chemotype for anti‐LT agents by virtual screening targeting 5‐LOX‐activating protein (FLAP). Here, we aimed to reveal the in vitro and in vivo pharmacology of BRP‐7 as an inhibitor of LT biosynthesis.Experimental ApproachWe analysed LT formation and performed mechanistic studies in human neutrophils and monocytes, in human whole blood (HWB) and in cell‐free assays. The effectiveness of BRP‐7 in vivo was evaluated in rat carrageenan‐induced pleurisy and mouse zymosan‐induced peritonitis.Key ResultsBRP‐7 potently suppressed LT formation in neutrophils and monocytes and this was accompanied by impaired 5‐LOX co‐localization with FLAP. Neither the cellular viability nor the activity of 5‐LOX in cell‐free assays was affected by BRP‐7, indicating that a functional FLAP is needed for BRP‐7 to inhibit LTs, and FLAP bound to BRP‐7 linked to a solid matrix. Compared with the FLAP inhibitor MK‐886, BRP‐7 did not significantly inhibit COX‐1 or microsomal prostaglandin E2 synthase‐1, implying the selectivity of BRP‐7 for FLAP. Finally, BRP‐7 was effective in HWB and impaired inflammation in vivo, in rat pleurisy and mouse peritonitis, along with reducing LT levels.Conclusions and ImplicationsBRP‐7 potently suppresses LT biosynthesis by interacting with FLAP and exhibits anti‐inflammatory effectiveness in vivo, with promising potential for further development.
查看更多

同类化合物

(5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,11-二酮 齐墩果-12-烯-2α,3β,28-三醇 齐墩果-12-烯-29-酸,3,22-二羟基-11-羰基-,g-内酯,(3b,20b,22b)- 齐墩果-12-烯-28-酸,3-[(6-脱氧-4-O-b-D-吡喃木糖基-a-L-吡喃鼠李糖基)氧代]-,(3b)-(9CI) 鼠特灵 鼠尾草酸醌 鼠尾草酸 鼠尾草酚酮 鼠尾草苦内脂 黑蚁素 黑蔓醇酯B 黑蔓醇酯A 黑蔓酮酯D 黑海常春藤皂苷A1 黑檀醇 黑果茜草萜 B 黑五味子酸 黏黴酮 黏帚霉酸 黄黄质 黄钟花醌 黄质醛 黄褐毛忍冬皂苷A 黄蝉花素 黄蝉花定