The electronic absorption spectra and the chemical and thermodynamic stabilities of monoarylalkyl cations have been examined a function of cation structure.
The electronic absorption spectra and the chemical and thermodynamic stabilities of monoarylalkyl cations have been examined a function of cation structure.
The elimination of carbon monoxide from acid derivatives. Part III. Planar carbonium ions as necessary intermediates
作者:David G. Pratt、Eugene Rothstein
DOI:10.1039/j39680002548
日期:——
Elimination of carbonmonoxidefromacid chlorides by the Friedel-Crafts reaction is precluded if the resulting carboniumions are restricted to non-planar geometry by bicyclic or other structures with a rigid molecular framework. In such cases the normal ketones are obtained.
The methodology of changing ring flexibility to detect the pi-conjugative stabilization of bridgehead carbocations has been applied to eight 2-oxo (X = O) bridgehead carbocations. On the basis of the solvolytic behavior observed in kinetics and product analyses, the eight 2-oxo bridgehead substrates were classified into three categories: three substrates solvolyzing without ion-pair return that leads to primary isomers (class A), three substrates that form primary isomers by ion-pair return during solvolysis (class B), and two substrates that undergo solvent addition to the carbonyl group to form hemiacetals during solvolysis (class C). It was concluded that the substrates of class C could not be used for the present purpose. Essentially constant ethanolysis rate ratios, k(X = O)/k(X = H-2), of 10(-8.2)-10(-8.7) at 25 degrees C were obtained between four 2-oxo substrates in classes A and B and the corresponding parent unsubstituted ones. The result was interpreted to suggest that the pi-conjugative stabilization of tertiary alpha-carbonyl carbocations is negligibly small, if present. Slightly more negative k(X = O)/k(X = H-2) values of 10(-9.7) and 10(-9.2) for highly flexible bicyclo[4.2.2]dec-1-yl and bicyclo[4.3.1]dec-l-yl systems, respectively, were attributed to complex conformations in the ground and incipient carbocations. PM3 calculations on some 2-methylene and 2-oxo bridgehead carbocations supported the experimental results. Comparison of the solvolysis rates of 1,1,3,3-tetramethyl-2-oxobutyl mesylate with those of 1,1,3,3-tetramethylbutyl mesylate estimated from the rates of the corresponding chloride also failed to support the pi-conjugative stabilization of alpha-carbonyl carbocations.