Design, synthesis and evaluation of amino-substituted 1H-phenalen-1-ones as anti-leishmanial agents
摘要:
Screening of a designed collection of mono-substituted amino-IH-phenalen-1-ones against promastigote forms of L. donovani and L. amazonensis, identified seven compounds with anti-leishmanial activities comparable or better than the commonly prescribed anti-leishmanial drug, miltefosine. Structure activity analysis revealed that appendages containing a basic tertiary nitrogen were favored, and that the position of the appendage also affected their potency. Like miltefosine, several of these active compounds significantly reduced the mitochondrial membrane potential in promastigotes. Further studies in amastigotes of L. amazonensis revealed that compounds 14, 15 and 33 were more active and more selective than miltefosine, with sub-micromolar potencies and selectivity indices > 100. (C) 2017 Elsevier Masson SAS. All rights reserved.
Evaluation of synthetic naphthalene derivatives as novel chemical chaperones that mimic 4-phenylbutyric acid
摘要:
The chemical chaperone 4-phenylbutyric acid (4-PBA) has potential as an agent for the treatment of neurodegenerative diseases. However, the requirement of high concentrations warrants chemical optimization for clinical use. In this study, novel naphthalene derivatives with a greater chemical chaperone activity than 4-PBA were synthesized with analogy to the benzene ring. All novel compounds showed chemical chaperone activity, and 2 and 5 possessed high activity. In subsequent experiments, the protective effects of the compounds were examined in Parkinson's disease model cells, and low toxicity of 9 and 11 was related to amphiphilic substitution with naphthalene. (C) 2015 Elsevier Ltd. All rights reserved.